CSAE Working Paper WPS/2015-07

Can Farmers Create Efficient Information Networks?
Experimental Evidence from Rural India∗

A. Stefano Caria† Marcel Fafchamps‡

January 2015

∗We are first of all indebted to Gaurav Puntambekar for his outstanding management of the project. We would like to thank Johannes Abeler, Francesco Cecchi, Megenagna Gashaw Guade, Esteban Ortiz Ospina, Simon Quinn, Bassel Tarbush, Mateusz Ujma and seminar participants at the 2014 NEUDC Conference, the 2014 Pacific Development Conference, the 2014 conference of the Centre for the Study of African Economies, the 2014 CESifo conference on social economics, and at the CSAE workshop series for useful comments and suggestions. Our gratitude also goes to the the enumerators and supervisors whose contributions made this study possible. We finally would like to thank the study participants for their goodwill and patience. All mistakes remain naturally ours. This document is an output from research funding by the UK Department for International Development (DFID) as part of the iiG, a research programme to study how to improve institutions for pro-poor growth in Africa and South-Asia. The views expressed are not necessarily those of DFID. Stefano Caria further acknowledges financial support from the Economic and Social Research Council, UK.

†Centre for the Study of African Economies, Department of Economics, University of Oxford. Email stefano.caria@economics.ox.ac.uk. Web: https://sites.google.com/site/stefanoacaria

‡Stanford University
Abstract

We run an artefactual field experiment in rural India which tests whether farmers can create efficient networks in a repeated link formation game, and whether group categorization results in homophily and loss of network efficiency. We find that the efficiency of the networks formed in the experiment is significantly lower than the efficiency which could be achieved under selfish, rational play. Many individual decisions are consistent with selfish rationality and with a concern for overall welfare, but the tendency to link with the ‘most popular’ farmer in the network causes large efficiency losses. When information about group membership is disclosed, social networks become more homophilous, but not significantly less efficient. Networks play an important role in the diffusion of innovations in developing countries. If they are inefficiently structured, there is scope for development policies that support diffusion.
1 Introduction

It is well-known that knowledge about new technologies diffuses through social networks. Farmers, for example, share with each other information about the profitability and optimal use of agricultural innovations \cite{Foster and Rosenzweig, 1995, Munshi, 2004, Bandiera and Rasul, 2006, Conley and Udry, 2010, Krishnan and Patnam, 2012}. Peer-learning has also been documented for new health technologies and financial products \cite{Kremer and Miguel, 2007, Oster and Thornton, 2012, Banerjee et al., 2013}. The pattern of this information diffusion is influenced by the structure of networks. For example, when some individuals have no connections, diffusion can be partial. When information has to travel through long chains of links, diffusion can be slow.\footnote{Network structure also has important consequences for learning when information is noisy and individuals have to aggregate the signals generated by multiple experimenters \cite{Bala and Goyal, 1998}.} Efficient information networks maximise the total value of the information circulated, net of the cost of diffusion \cite{Bala and Goyal, 2000}.

Evidence on the efficiency of information networks is scarce. Little is known, for example, about the efficiency of these networks among farmers. Two recent randomised control trials show that monetary incentives for information agents in rural communities improve the diffusion of information in a cost-effective fashion \cite{Ben Yishay and Mobarak, 2012, Berg et al., 2013}. This indirectly suggests that un-incentivised diffusion is suboptimal. Direct evidence is largely missing.

Observational assessment of network efficiency is complicated by several factors. First, a census of all individuals and all links is required. Such data is usually hard to obtain. Furthermore, the costs and benefits of each link have to be quantified. These are often not observed by the field researcher. Finally, with observational data alone, it is difficult to attribute inefficiency to the preferences and decision-making rules of individuals, or to the constraints individuals face. In this study, we instead rely on an artifactual laboratory experiment that allows us to quantify the efficiency of small experimental networks, with a great deal of control over the constraints imposed on decision makers \cite{Harrison and List, 2004}.

We study whether farmers form efficient networks in a sequential link-formation game. Our motivating example is the diffusion of information. A link, in this example, represents a social interaction where new information is observed. Each farmer can form one link to another player, without requiring the partner’s consent. Observation occurs only in one direction. Crucially, when farmer i observes the information of
farmer j, he has also access to the information which farmer j has acquired by observing other players. The benefits of a link are thus proportional to the number of players that can be ‘reached’ directly or indirectly thanks to this link. This set-up is that of unilateral, one-way flow link formation with no decay discussed in Bala and Goyal [2000].

We manipulate the basic game along two dimensions. First, we vary the direction of information exchange. In the first treatment, a player selects the partner he would like to observe. In the second treatment, a player chooses the partner by whom he will be observed. In both treatments, the cycle network is efficient\(^2\), a Nash equilibrium, and generates no inequality in payoffs across agents. Selfish agents playing best response converge to the cycle network after repeated play of the first treatment.\(^3\) Efficiency-minded, other-regarding players converge to the cycle network in the second treatment. By ruling out tradeoffs between efficiency and equilibrium, limiting coordination requirements, and anonymising interaction we give the ‘best shot’ to the possibility of efficient networks emerging in the game.

Second, we vary whether farmers have knowledge about the group affiliation of the other players. At the beginning of the experiment we randomly assign farmers to groups that have to compete in an unrelated task. In selected experimental sessions, we publicly disclose information about players’ group identity.\(^4\) We test whether, as a result, the number of in-group links increases and the efficiency of networks decreases. Social differentiation may discourage links that are desirable from an efficiency point of view. Observational research on networks often points to the importance of homophily—the tendency of similar individuals to interact with each other with disproportionate frequency [McPherson et al., 2001, Currarini et al., 2009, Golub and Jackson, 2012]. Homophily can be the result of a norm related to group membership [Akerlof and Kranton, 2000]. In our game, restricting links to in-group partners would result in

\(^2\)As in Bala and Goyal [2000], we define welfare as the sum of players’ payoffs. The efficient network maximises this sum of payoffs. The cycle is the (unique) efficient network in our game. We define a relative measure of efficiency by comparing the sum of expected payoffs determined by a particular network to the sum of expected payoffs which obtains in the cycle network.

\(^3\)Farmers play sequentially. We describe this in detail in the next section and show simulation results indicating that convergence to the cycle network is fast when players follow selfish best response. This is not surprising. Bala and Goyal [2000] study a sequential game with features very similar to ours. Part (a) of their theorem 3.1 applies to a class of payoff functions that includes the one of our game. For these payoff functions, theorem 3.1 shows that the network converges to the cycle with probability one when players play selfish best-response.

\(^4\)Personal identity, on the other hand, is never disclosed.
large efficiency losses.

When group identity is not disclosed, we predict that individuals will play simple, intuitive link-formation rules leading to high levels of efficiency. In the first treatment, the selfish best response is to choose the player who reaches, directly or indirectly, the highest number of individuals in the network. In the second treatment, other-regarding players who want to maximise the sum of payoffs in the group will target the player who is reached by the highest number of individuals. Players who instead want to maximise the payoff of the least well-off peer will choose the farmer who reaches the smallest number of individuals. We derive these predictions from standard models of strategic network formation augmented to include other-regarding preferences [Bala and Goyal, 2000, Charness and Rabin, 2002].

When group identity is disclosed, we predict individuals will choose in-group links more frequently, possibly at the cost of establishing less efficient networks. Previous research has highlighted how group categorisation generates in-group favoritism [Tajfel, 1981, Brewer, 1999, Akerlof and Kranton, 2010], affects social, risk and time preferences [Benjamin et al., 2010, Chen and Li, 2009, Kranton et al., 2012], influences behaviour in strategic environments [Yamagishi and Kiyonari, 2000, Charness et al., 2007], and modifies performance [Hoff and Pandey, 2006]. Akerlof and Kranton [2000] posit that agents receive utility from following prescriptions associated with their social categories. Many farmers in our experiment report that restricting links to the in-group is prescribed. Thus, when the preferred partner belongs to the out-group, a farmer faces a tradeoff between efficiency and conformity with the social prescription. We expect that at least some subjects will choose to conform.

In terms of methodology, we take steps against a number of common confounders of experimental inference: low understanding, side payments, wealth effects and experimenter demand effects. We rely on induced, randomised group membership to rule out unobserved covariates that may be correlated with natural groups. As the saliency of induced group membership has been found to influence behaviour in economic experiments [Charness et al., 2007, Eckel and Grossman, 2005], we increase saliency by means of an independent task that sets the two groups in competition.

We run our experiment in the Indian state of Maharashtra. With the many social identities based on caste, religion and class, India offers an appropriate setting to study homophily in social networks [Beteille and Srinivas, 1964, Guha, 2008, Dunning and Nilekani, 2013]. Recent work on information agents in rural communities indeed
suggests that social distance affects the probability of information diffusion and experimental work has shown that priming natural identities, chiefly caste, affects individual performance and economic outcomes [Hoff and Pandey, 2006, Anderson, 2011, Berg et al., 2013]. In India, interest in novel agricultural extension approaches that exploit farmers’ dense social network activity is also high.

Our findings can be summarised as follows. First, network efficiency is significantly lower than the level of efficiency which selfish or efficiency-minded players would have achieved playing the rules we outline above. Expected payoffs are, on average, only 65 percent of those in the cycle network. Interestingly, farmers in the second treatment achieve levels of network efficiency similar to those of farmers in the first treatment.

Second, the link-formation rules we derive have considerable predictive power. In the second treatment, for example, 70 percent of decisions are consistent with either of the two rules outlined above. Regression analysis confirms the statistical significance of this result. We also identity two additional link-formation rules which have further predictive power on link-formation decisions: choosing the ‘most popular’ player in the network, and choosing a player by whom one was chosen in a previous turn. About 65 percent of the decisions that are not consistent with the predicted rules target the ‘most popular’ player in the network. Simulation analysis suggests that the largest gains in efficiency could be achieved by reducing the proportion of decisions that follow this rule.

Third, when information about group membership is disclosed, the resulting networks have more in-group links, but are not significantly less efficient. These effects can occur simultaneously if farmers (i) always follow their chosen link-formation rule, but (ii) whenever this rule is satisfied by both in-group and out-group partners they prefer to link with an in-group partner. Consistently with this mechanism we observe that in the first treatment the frequency of in-group links that satisfy the selfish link-formation rule grows by 13.8 percentage points. The overall frequency of in-group links increases by 11.7 percentage points in this treatment.

Our work relates most directly to the literature on network formation. This has developed theoretically through the seminal contributions of Jackson and Wolinsky [1996] and Bala and Goyal [2000]. Experimental work on link formation has been motivated by these models and has explored issues of inequity aversion [Goeree et al., 2009, Van Dolder and Buskens, 2009, Falk and Kosfeld, 2012], coordination [Berninghaus et al., 2006], and whether chosen links are myopic best responses or far-sighted
strategies [Callander and Plott, 2005, Conte et al., 2009, Kirchsteiger et al., 2011]. In a related experiment, Belot and Fafchamps [2012] compare unilateral partnership formation decisions to dictator game allocations with equivalent payoff consequences. All of these experiments use western subjects, typically university students.

A parallel literature has used observational dyadic data from rural areas of developing countries to explore how specific networks for the sharing of risk, favours, information and labour are formed [Fafchamps and Gubert, 2007, Krishnan and Scuibba, 2009, Karlan et al., 2009, Comola, 2010, Jackson et al., 2012, Santos and Barrett, 2010, Comola and Fafchamps, 2013]. Empirical studies of naturally occurring networks typically document some degree of homophily [McPherson et al., 2001]. A recent theoretical literature distinguishes between homophily motivated by preferences, opportunities or strategic behaviour [Currarini et al., 2009, Currarini and Menge, 2012, Tarbush and Teytelboym, 2014].

Falk and Kosfeld [2012] study a game of unilateral, one-way-flow link formation that is based on Bala and Goyal [2000] and hence is closely related to ours. The design we propose, however, differs on a number of dimensions: links are added to the network one at a time; players are allowed only one link, so that the only cost of a connection is the opportunity cost of not forming another connection; the game is played by groups of 6. The first two features limit coordination and computation problems and make the game simpler. Falk and Kosfeld [2012] find that efficient networks are achieved in about half of the periods of the game. However, they do not report an average efficiency statistics for the one-way-flow treatment, which makes it difficult to compare their results to ours.

\[\text{5}^{\text{Individuals may have a desire to match with in-group partners, they may simply be exposed to more potential matches with in-group peers, or they may link with in-group peers because it is in their material interest to do so, for example, in order to avoid sanctions associated with deviations from social norms.}}\]

\[\text{6}^{\text{We can however note that in the last period of our game, the cycle network is achieved in less than 10 percent of the sessions, that is, much less frequently than in any of the one-way-flow treatments studied by Falk and Kosfeld [2012].}}\]
techniques to investigate how the structure of the network and the position of the first injection point affect diffusion.

Finally, our study is related to identity economics and a rich literature in economics and social psychology, referenced above, that studies how group categorisation generates in-group bias and modifies behaviour. A recent experiment by Curra\-ri\-ni and Menge [2012] shows that group categorisation produces both in-group bias in allocation and homophilous matching. Interestingly, a further treatment with exogenous matching shows that in-group bias is lower when subjects can choose their interacting partners.

Our contribution is threefold. First, we document low levels of network efficiency in unilateral, one-way flow link formation. This is a stark result in a simple game with limited coordination issues and clear theoretical predictions. The literature has recently started exploring how subjects in rural areas of developing countries achieve lower efficiency in trading experiments than Western players [List, 2004, Bulte et al., 2012]. Our findings suggest that networks could be a second domain of widespread inefficiency and cross-cultural difference. Second, we document heterogeneous link formation strategies that are consistent with a number of models of other-regarding preferences. This can inspire further theoretical study of network formation that explicitly includes other-regarding preferences. Third, our results document an effect of arbitrary group categorisation on networks. This expands our understanding of the settings in which group categorisation modifies behaviour. It also shows how, beyond the material payoffs of the game, the formation of networks can be influenced by features of the social world. This could be a particularly fertile area for future experimental research on networks.

The paper is organised as follows. Section 2 presents the design. Section 3 develops predictions and testable hypotheses. Section 4 describes the data. Section 5 reports the results of the analysis. Section 6 concludes.

2 Design

The link formation game is played by groups of 6 farmers. One of the farmers is randomly drawn at the end of the experiment to receive a monetary prize.\footnote{The prize is worth 100 Indian Rupees, or about 5.2 USD at PPP, given an exchange rate at the time of 0.0155 USD per INR and a PPP conversion factors of 10/3 from the 2011 ICP round (\url{http:...}}} In our motivating example, the prize corresponds to a piece of valuable information. Farmers
form a network to diffuse this information. The initial network has no links. Each farmer can add to this empty network a link between himself and another player. This decision is unilateral: the consent of the other player is not required. Players who are directly or indirectly linked to the winner of the prize in the final network receive a prize of equivalent value. In other words, once a link is in place, the prize is non-rival and non-excludable. This is the value of a link. Such benefit flows only in one direction. For example, in the network represented in figure 1, farmer B reaches farmers C and D, and hence receives the prize if C or D win the prize draw. Player C reaches only player D, while players D, E, F and A do not reach any player.

Play is sequential. The game is divided in two rounds. Each round comprises 6 turns. In every turn, only one player takes a decision. Each player is randomly assigned to one turn per round. Participants are informed of this rule, but do not know the particular order of play which has been drawn for their session. In the first round, players create one link. In the second round, players can rewire their existing link.9

Players’ decisions are recorded on a network map drawn on a white board visible to all players. The map is updated after every turn. A number of design features ensure sequential updating takes place without breaking anonymity.10 Furthermore, the pilot

8All experimental materials can be found here: https://sites.google.com/site/stefanoacaria/linkformationindia.

9In both rounds players have the options not to form any link. This option is rarely used.

10Participants record their decisions on a game sheet. Modified cardboard boxes ensure participants cannot see what other players are choosing. However, the boxes do not prevent players to infer from a peer’s body
revealed that when the network map has more than a few links players find it difficult to calculate the number of direct and indirect connections of each peer. We hence remind the decision maker of the total number of (direct and indirect) connections every other player has in the current network. The counting of connections is done by means of a Java application running on a small laptop operated by the game assistant. After entering a new link, the software produces a table with the number of (direct and indirect) connections of each player in the current network. This number is written next to the respective player ID on the white board, immediately after the network map has been updated with a new link.

The experimental tasks are carried out in the following order:

1. Players randomly draw a card from an urn which assigns them a letter ID and an experimental group.

2. Players answer three questions on agricultural knowledge, which are part of an intergroup contest in agricultural knowledge. At the end of the experiment, if all players in a group have answered all questions right, the group receives one point and is applauded by everyone. Points are summed across sessions and participants are informed of the overall ranking between the two groups.11

3. Players play a simple allocation task, where they have to divide a fixed sum of money between an in-group and an out-group recipient randomly drawn from the participants in the following session of the experiment.

4. Players play the link formation game. They are given the instructions of the game, they answer a number of questions which test their understanding of these instructions12, and they then play a trial of the game that lasts for seven turns. At the end of the trial, the game assistant randomly draws a participant and shows movements whether he is updating his game sheet or not. This threatens anonymity as it is possible to determine which participant has the turn by simply checking who is updating his game sheet at a given point in the game. We solve this problem in the following way. At the beginning of each turn, the game assistant publicly calls the ID of the player who has the turn. After allowing some time to look at the updated network map, the game assistant asks all players to make a circle on their game sheet. The player with the turn circles the ID letter of the player to whom he would like to link, while the players without the turn draw a circle in an empty box provided on the same page of the game sheet. As everybody writes something on their game sheet at the same time farmers cannot infer the identity of the player with the turn by checking who is updating his game sheet at a given point.

11Notice information about the overall ranking is disclosed only at the end of the experiment, that is, after step 5 in figure 2. So, whilst the contest creates the feeling of inter-group competition on a second, unrelated domain, it does not affect the beliefs farmers may have about the levels of knowledge and cognitive ability of other farmers in their group.

12The game assistant checks the answers and is instructed to give further explanations of more than one
who would receive the prize if this was the actual game. After the trial, the actual link formation game is played.

5. Players are asked three questions about their expectations and beliefs and are then administered a short questionnaire, which collects information on socio-demographic variables and asks participants to explain the motivation behind their decisions in the game. At the end of this fifth phase, participants are informed of which team won the contest in agricultural knowledge and of the number of points each team has collected across sessions.

We rely on a between-subject design. We vary the direction of the flow of benefits associated with a link. In Treatment 1 (henceforth T1), players form links that let them reach other individuals. This means that if player A chooses player B, then player A will receive the monetary prize whenever B wins the prize, but not vice versa. In Treatment 2 (henceforth T2), links let other players reach the player who proposes the link. If A chooses a link with B, then B will receive the monetary prize whenever A wins it, but not vice versa. Figure 3 illustrates. Following our theoretical predictions in the next section, as the network is updated, players are reminded of the number of individuals which each player reaches. In T2, players are also reminded of the number of individuals who reach a particular player. For example, in panel (b) of figure 3, player D reaches one player (player E). While two players (B and C) reach player D. In T1, players are only reminded about the fact that D reaches one player. In T2, they are reminded both about the fact that D reaches one player and the fact that two players reach D.\footnote{We give precise definitions of these concepts in the following section.}

We also vary the information about peer group membership available to players during the link formation game. This is cross-cut with T1 and T2. In a first set of player makes more than one mistake. Hence these can be considered as a lower bound on the level of understanding of players.
treatments, which we call T1no and T2no, individuals have no information about peers’ group affiliation. Hence their link formation decisions are by design unrelated to the groups formed at the beginning of the experiment. In a second set of treatments, called T1id and T2id, group identity is common knowledge, as players belonging to different groups are identified with different symbols on the public network map on the whiteboard. We hence run four treatments, as shown in table 1.

Instructions are framed in terms of a salient example from the local context. The link formation game is presented as a game where one farmer will receive a valuable piece of information about a new agricultural technology. The network determines who receives help from the farmer with the valuable information. In T1 the choice of a link is presented in terms of choosing who to approach for help to access the valuable information. In T2 the choice is about which other player one wants to help in case one accesses the valuable information. The groups are called the mango and the pineapple group. In the explanation they are associated to the producer groups which farmers typically form in the areas of our study.

In our design, group membership is randomly allocated. The original experiments

14Mango group players are identified with a circle. Pineapple group players are identified with a triangle.
in social psychology, on the other hand, rely on groups which are formed on the basis of trivial preferences.15 While preference-based matching has the potential to increase the saliency of group membership, it also has two disadvantages. First, players' characteristics may be correlated to what the researchers considers as orthogonal preferences. Second, even if the chosen set of preferences is truly orthogonal, some players may believe that such correlation exists. For example, a player may (erroneously) think that people with a certain preference in art or sport are smarter. In both cases, the effects of common knowledge of social identity would be confounded by those associated with correlated categories and beliefs.

We hence opt for a design which relies on random assignment to social groups and increases the saliency of group identity by means of the contest in agricultural knowledge. This task combines four desirable features: (i) it is linked to the overall framing of the experiment, (ii) it creates a feeling of competition between the two groups on a domain, that of agricultural knowledge, which is distinct to the domain of monetary outcomes of the experiment, (iii) the relative position of the two groups in this second domain is only revealed after the link formation game has been played, (iv) every player can have a strong marginal impact on the group's outcome: if a player fails to answer one question correctly, the whole group fails to gain the point for that session. The idea of using contests to increase the salience of group identity has been successfully used before in experimental studies [Eckel and Grossman, 2005].

To ensure comparability and minimize noise during play, we follow a number of established practices in the lab-in-the-field literature. These include extensive piloting, simple standardized instructions that are read out to participants, double translation of all written material, and reliance on physical randomization devices [Barr and Genicot, 2008, Viceisz, 2012].

\subsection{Possible Confounders}

We take a number of steps against common confounders of experimental analyses.

\textbf{Low understanding}. We test players' understanding before the game starts. Subjects in T1no and T1id are asked 8 understanding questions, while subjects in T2no and T2id are asked 7 understanding questions. The questions test for understanding of the network map and of the incentives that result from the rules of the game. After

15Notice however that in-group bias in allocation tasks is found also when group membership is determined by the flip of a coin [Tajfel, 1981]
the questions are asked, enumerators briefly check the answers and give further explanations on the points where players made mistakes. Hence these answers give a lower bound to the level of understanding of players in the game.

Figure 19 in the appendix presents the cumulative distribution of mistakes. In both T1 and T2 more than 50 percent of players made at most 1 mistake, and about 80 percent of players made at most 2 mistakes.

To further increase understanding, we also run a trial round of the link formation game before the main game is played.

Side-payments. Personal identity is not disclosed in the game and payments are disbursed privately. This decreases the possibility of side-payments. In particular, it decreases the possibility that network formation decisions will be targeted towards individuals from whom side payments can be more easily extracted.

Wealth effects. Both the allocation task and the link-formation game are incentivised with monetary payments. In the allocation task individuals choose how to split a sum of money between two farmers in a future session of the experiment. The allocation decision does not affect the wealth of the decision maker. It also does not affect the wealth of the other farmers in his session. This rules out unintended influences across the two tasks created by endogenous shocks to players’ wealth.

Experimenter demand effects. These arise when subjects, in an attempt to please the experimenter, respond to implicit cues embedded in the experimental design [Zizzo, 2010]. For example, the fact that we disclose information about group identities may suggest to players that we expect them to use this information somehow. To minimize such concerns, we rely on a between-subjects design. These designs are thought to be less vulnerable to the demand effects critique [Zizzo, 2010]. Furthermore, we refrain to give knowledge about players’ experimental group identities in the instruction phase and in the trial round, to avoid making unintended suggestions about how we expect players to use the group membership information.

The visual reminder of the number of connections of each player can be a second source of experimenter demand effects. It could be argued that this feature biases the results in the direction of efficiency, as it increases the saliency of network statistics related to efficiency enhancing strategies. Our aim in including this feature was to exclude the possibility that lack of familiarity with the graphical representation of the
network would be driving departures from efficiency. Hence this design features is meant to ‘give the best shot’ to the possibility of efficient networks. In the light of this design feature, our finding that network efficiency is significantly below potential becomes, if anything, more compelling.

3 Predictions

Our objective is to study the efficiency of the experimental networks formed by farmers. We hypothesise that farmers will choose their links on the basis of the structure of the network in predictable ways. In particular, we expect that farmers in T1 will play selfish best response, while farmers in T2 will either try to maximise the sum of the payoff of all players in the session, or the payoff of the least well-off player. We first present the ‘link-formation rules’ that follow from these preferences. Then, we simulate link-formation games where individuals follow the proposed rules and study the efficiency of the resulting networks. We show that when all farmers play selfish best response in T1, or when they maximise the sum of all payoffs in T2, the structure of the network converges to the cycle with high frequency within two rounds of the game.

3.1 Link-formation rules

Throughout the analysis we repeatedly use two concepts: network reach and in-reach. We define the reach of farmer j as the number of players whom farmer j observes directly or indirectly. The in-reach of farmer j is the number of players who directly or indirectly observe farmer j. The expected payoff of farmer j is a linear function of his reach in the final network. If we normalise the value of the prize to 1, the expected payoff of farmer j is simply given by:

$$\pi_j = \frac{\text{reach}_j + 1}{6}$$

Farmer j’s in-reach, on the other hand, determines the number of players who indirectly observe the information that is observed by farmer j. It is a measure of how far the information available to farmer j travels in the network. We present formal notation and definitions of these concepts in the appendix.

Following much of the existing literature, we assume myopic behaviour: a farmer considers the network which obtains after his link is added as the final network of the game. This rules out dynamic strategies based on threats, rewards, or signals. Recent
research shows that the strategies played in experimental network formation games are often consistent with myopic best response [Conte et al., 2009].

In T1, a new link by player i affects his reach in the network, and hence his expected payoff. Only one link is permitted. Before this link is formed, player i has a reach of 0. A new link to player j allows player i to reach all the farmer whom player j reaches. Picking the partner with the highest reach maximises the reach of player i and, hence, his expected payoff. The link-formation rule of a selfish player in T1 will hence be:

Rule 1. Form a link with the player with the maximum reach.

For this first rule and for all the rules that follow, we assume that in case of a tie between two or more potential partners, farmer i randomly chooses one of these. Furthermore, when we study whether player i’s decisions conform to any of the link-formation rules, we exclude links to player i from the computation of the reach and in-reach of his potential partners. This is because, from player i’s perspective, these links are redundant: they do not allow him to observe more information in T1, or to spread his own information further in T2.

In T2, new links to do not affect the reach of the player that forms them. A purely selfish player would be indifferent between forming and not forming a link in this treatment. If he forms a link, he would be indifferent about its consequences on the welfare of other players. However, a large body of evidence in experimental economics shows that individuals care about the payoffs of the other players in systematic, heterogeneous ways [Charness and Rabin, 2002, Andreoni and Miller, 2002]. Following the literature on other-regarding preferences, we assume that players have a utility function that weights concerns for the player’s own payoff and the payoff of all other players:

\[u_i = \pi_i + \gamma f(\pi_{-i}) \]

16 In the appendix we show this formally.

17 Notice that player i’s strategy in T1 also has an impact on the payoffs of the individuals who have a path towards i in g. In future work, we will extend this section to include an analysis of how other-regarding preferences affect behaviour in T1.
where we assume that there are n individuals in the set of all players N, and $\pi_{-i} = \{\pi_i, \pi_2, \ldots, \pi_{i-1}, \pi_{i+1}, \ldots, \pi_n\}$. To advance further we have to make some assumptions about the shape of function f. We can explore two archetypal candidates. The first is:

$$u_i = \pi_i + \gamma \sum_{j \in N \setminus i} \pi_j$$ \hspace{1cm} (3)

Utility function 3 expresses a concern for aggregate welfare. Charness and Rabin [2002] argue this is the model of social preferences with the highest predictive power for dictator game allocations. When a farmer forms a new link with player j in T2, he increases the reach of player j and of all the players who observe player j. Intuitively, the effect on aggregate welfare of a new link is proportional to the number of individuals who observe player j. This is player j’s in-reach. In T2, the link that maximises the sum of individual payoffs should thus be a link with the player with the maximum in-reach.18 We predict that a fraction of players in T2 have other-regarding preferences expressed by 3 and will thus play according to the following link-formation rule:

Rule 2. Form a link with the player with the maximum in-reach.

A second possibility is that players care about the welfare of the player who is least well-off in the network. The literature in empirical social choice has documented this type of concern [Yaari and Bar-Hillel, 1984], which we can express using the following max-min utility function:

$$u_i = \pi_i + \gamma \min_{j \in N \setminus i} \pi_j$$ \hspace{1cm} (4)

Utility function 4 is akin to the Rawlsian social welfare function which is a staple of social choice theory. The function is maximised by choosing the player with the lowest reach, which is the player with the lowest expected payoff. We predict that a fraction of players in T2 have other-regarding preferences expressed by 4 and will thus play according to the following link formation rule:

Rule 3. Form a link with the player with the minimum reach.

18In the appendix we show this formally and explain one qualification that applies to links that create a small cycle.
Notice that, depending on the structure of the network, the sets of players who satisfy rules 2 and 3 can be disjoint or overlapping. Figure 15 in the appendix shows an example where the two sets are disjoint: F has the minimum reach while A,B,C, and D all have the maximum in-reach.

A third model of social preferences is that of inequality aversion [Fehr and Schmidt, 1999]. Under inequity aversion, a player feels guilt towards players with a lower expected payoff and envy towards players with a higher expected payoff. An inequity averse player in the first turn of a T2 session prefers not to form any link, as this would cause him to feel envy towards the player who benefits from the link. This prediction is virtually always falsified in our pilot and main data. We thus do not explore the predictions of the model of inequity aversion any further.

On the basis of the discussion above, we make the following prediction regarding individual decisions.

Prediction 1. In T1 players will form links to partners with the maximum reach. In T2 players will form links either with partners with the maximum in-reach or with partners with the minimum reach.

For ease of exposition we will sometimes refer to rule 1 and rule 2 as the ‘efficiency-minded rules’, as both of these rules follow from a desire to maximise payoff (either one’s own, or that of the rest of the group). We will also refer to rule 3 as the ‘Rawlsian rule’, as it reflects the max-min logic of the Rawlsian social welfare function.

3.2 Network efficiency

We measure welfare as the sum of individual expected payoffs. The cycle network, where each player wins the prize for sure, maximises this sum and is the unique efficient network structure in our game. To compare the cycle network to other networks, we define a continuous measure of efficiency by taking the ratio between the average reach of players in a network and average reach of players in the cycle.

\[
\text{Efficiency}_g = \frac{\frac{1}{n} \sum_{i=1}^{n} \text{reach}_i}{5}
\]

(5)
The cycle network has efficiency 1 under this measure. All other possible networks have a level of efficiency that falls in the interval [0, 1). Our definition of efficiency rises monotonically with the sum of the expected payoffs in a network.

We simulate link-formation games where players follow the link-formation rules outlined above and we study the overall efficiency of the resulting networks. Our first set of simulations shows that when all players follow rule 1 in T1 average efficiency is about 96 percent. Figure 4 gives an example of how play in accordance with rule 1 achieves the cycle network within 2 rounds. Once the cycle network is reached, under rule 1 no player wants to rewire his link.

In a very small number of cases the process does not converge to the cycle. This is because players randomise between candidates of equal value, without consideration to the future order of play. This sometimes results in a situation where the player who can form the cycle network by re-wiring his link has already played his second turn. If we allow more rounds, the likelihood of this occurring in every round becomes very small. For example, in three rounds rule 1 achieves 99 percent efficiency.

Our second set of simulations shows that when all players play according to rule 2 in T2 average efficiency is also about 96 percent. When all players in T2 play according to rule 3, on the other hand, network efficiency is 67 percent. Figure 5 reports kernel density estimates and average efficiency for simulated sessions where play is in accordance, respectively, with rule 2, rule 3, and with a random link formation process. The random link formation process achieves average efficiency of about 52 percent.

We also study efficiency in sessions where a mix of rules is played. We simulate sessions where a fraction p of decisions follow rule 3, and a fraction 1-p of decisions follow rule 2. Results show that efficiency decreases monotonically with p in the interval between 96 and 67 percent. Figure 16 shows this graphically. We can thus formulate the following prediction on session level efficiency.

Prediction 2. Network efficiency in T1 is close to 96 percent. In T2, it is between 96 and 67 percent.

19 This is not surprising, as rule 2 generates link formation processes that are symmetrical with the respect to rule 1 in T1.
Figure 4: Network evolution under rule 1 in T1

For ease of presentation, the order of play is assumed to be the order of the alphabet. All players in this simulation play according rule 1. Turns 7-11 are in the second round, where players rewire their existing link. Turns 8-10 are omitted because no rewiring takes place.
Figure 5: Average efficiency under different link-formation rules in T2

Each panel reports kernel density estimates of the distribution of the average value of reach after 12 turns of play for 500 simulated sessions. The vertical line indicates average efficiency achieved by a given rule. The rule used in each set of simulations is indicated below the panel.
Figure 17 in the appendix shows the evolution of efficiency under the different link formation rules. In the second round, efficiency has no trend when all players play random or rule 3. However, when players play rule 2, average efficiency monotonically increases every turn.

3.3 The effect of group identity

In order to make predictions about behaviour when group identity is disclosed, we follow the seminal paper of Akerlof and Kranton [2000] and introduce a positive effect on utility which comes from following a social prescription:

\[u_i = \pi_i + \gamma f(\pi_i) + P_i \]

\(P_i \) is equal to a positive constant c if player i follows the social prescription. In our game, for example, farmers may get positive utility whenever they use their link to connect with an in-group partner. This may describe the satisfaction arising from following a norm which states that links should be restricted to in-group partners. Whenever an in-group link generates an additional positive effect on utility of c we say that the individual is subject to a norm of homophily. Self-reports from our players are consistent with the existence of such norm. In a questionnaire administered after the game, 51 percent of players agree with the statement: ‘In a game like this, one should only link to a player of his own group’. Furthermore, about 70 percent of players expect at least 3 of the other 5 individuals in the session to agree with the statement.

What will be the effect of disclosing group identity in our game? Suppose farmer i follows rule 2 in T2. For any positive value of c, whenever there are both in-group and out-group players who have maximum in-reach, farmer i will form a link with one of the in-group players. Before disclosure of group identity, he would have randomly chosen among the players with maximum in-reach. After disclosure, he can target his link to an in-group partner. The frequency of in-group links increases.

Now consider the case where there are no in-group players with maximum in-reach. If c is small, the positive utility from following the social norm will not compensate the loss in utility from failing to maximise the social objective. In this case, farmer i will act in the same way as he would have when group identity was not disclosed: he will form a link with an out-group player.
If c is high, on the other hand, the in-group player with highest reach within the set of in-group players may be preferred to the player with the highest in-reach overall. In this case, after disclosure of group identity, farmer i will sometimes choose links that have a weaker effect on aggregate welfare. The efficiency of the network decreases.

The higher c, the larger the difference in in-reach a farmer is prepared to tolerate in order to conform to the social norm. In a set of simulations reported in figure 18 in the appendix, we show that when individuals play rule 2 and tolerate a difference in in-reach of 2 units, average network efficiency is 53 percent. When players play rule 3 and tolerate a difference in reach of 2 units, average efficiency is about 40 percent.\footnote{As a limit case, suppose farmers in $T1$ would never link to an out-group peer. If the play rule 1 among in-group partners, the network will converge to two small cycles with 3 players each. The average reach for this network structure is 2, corresponding to 40 percent efficiency.}

These considerations motivate a final prediction:

Prediction 3. Disclosure of group identity generates networks characterised by (i) more in-group links and, depending on the magnitude of c, (ii) lower efficiency.

3.4 Analysis

We analyse treatment effects using non-parametric two-sided Wilcoxon rank sum tests over session-level outcomes. We focus in particular on efficiency and the number of in-group links in the final network. The Wilcoxon rank sum test is a test of the null that the outcomes of the two treatments are drawn from same distribution. The alternative hypothesis is that either outcome is stochastically greater\footnote{For two populations A and B, A is stochastically greater than B if $Pr(a > b) > \frac{1}{2}$, where a and b are observations from population A and B, respectively. The two-sided Wilcoxon rank sum test sets the null of $Pr(a > b) = \frac{1}{2}$ against the alternative hypothesis that $Pr(a > b) \neq \frac{1}{2}$. The two-sided test is more conservative than the one-sided test.} than the other.

Further, we study individual decisions with dyadic regression analysis. In particular, we use models of the following form:

$$link_{ij,r} = \alpha + \text{Network Position}_{ij,r} \beta + D_{ij} \gamma + \delta \text{round}_r + \epsilon_{ij,r}$$ \hspace{1cm} (7)
The unit of observation is all i-j dyads in each session s. We observe each dyad once for each of the two rounds r. link\textsubscript{ijr} is a dummy which takes value 1 if player i has chosen to establish a link with player j in round r. The matrix 'Network Position' contains variables which describe the network position of player j before player i's decision in round r. For each treatment, these include the variables specified in the link formation rules we propose above. For T2, these include a dummy for having the minimum reach, and a dummy for having the maximum in-reach. For T1, they include a dummy for having the maximum reach. As a check, in T1, we also include a dummy for having the minimum value of in-reach. For robustness, we will also run specifications where we include the actual values of reach and in-reach.

To control for correlations between our variable of interests and the fixed positions of the players in the network map, we introduce a dummy variable for each possible pairing of map positions.22 The matrix D_{ij} contains these variables. Furthermore, we control for round specific effects.

Model (7) will be estimated using OLS, correcting standard errors for arbitrary correlation at the session level. We can plausibly assume that there is no correlation between errors terms involving individuals in different sessions of the experiment. However, as explained, individuals are only allowed one link. This generates a correlation between error terms involving similar individuals within a session. For example, since a link to j precludes a link to k, $E[e_{ijr}, e_{ikr}] \neq 0$. This inference problem is typical in dyadic regression analysis [Fafchamps and Gubert, 2007]. We correct for intra-session correlation in error terms using cluster-robust standard errors for inference.

Previous studies have shown that when the number of independent groups of observations is low, the cluster correction delivers downwardly biased standard errors [Cameron et al., 2008]. Thus, when we run regressions with less than 40 clusters, we apply the wild bootstrap correction to p-values proposed by Cameron et al. [2008].

22For example, see figure 4. From the perspective of player A, while B's position in the network is evolving, B remains A's closest neighbour in the visual representation of the set of players. This may make player A more likely to choose B than more distant players when A makes mistakes. To reach the cycle network, Player A may also choose an immediate neighbour as part of a coordination strategy which relies on physical proximity. A similar possibility is explored in Callander and Plott [2005]. Alternatively, some positions in the map, for example A's position, may be visually more salient. If the position in the map is correlated with the network position of the player, regression analysis would suffer from omitted variable bias. We hence include position dummies for all possible directed dyads (AB, AC, .. , BA, BC, ..) to ensure that the effect of network position which we study in regression 7 is not confounded by correlations with the initial position in the network map.
4 Data

We run our field experiment in the Indian state of Maharashtra. We randomly sample from a census list of all villages in 4 ‘talukas’ (sub-districts) of the Pune and Satara districts. Villages in these subdistricts are situated approximately 1,30 to 3h hours away from Pune. This is a similar distance to the district capital as that of the villages selected in the study of Banerjee et al. [2013]. To reflect the large heterogeneity in geographic conditions in this area of India, we choose two subdistricts which mostly comprise mountainous areas, and two subdistricts in the agricultural plains.

We select study participants through door-to-door random sampling. Before reaching the village, our team is shown a Google Earth map of the village. On alternating days, the teams start sampling from the periphery of the village or from the center of the village. We invite all male adult farmers who are encountered in the door-to-door visit until we have enough farmers to fill in all planned sessions.

Data collection took place between September and October 2013. In total, we run 81 sessions with 486 subjects. We run 20 sessions of T1no, T1id and T2id, and 21 sessions of T2no. In three of the sessions one participant left before the beginning of the link formation stage. This leaves us with 483 subjects, which correspond to 4800 dyads. Table 2 summarises the number of observations we have for each treatment.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sessions</th>
<th>Players</th>
<th>Dyads</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1no</td>
<td>20</td>
<td>120</td>
<td>1200</td>
</tr>
<tr>
<td>T1id</td>
<td>20</td>
<td>119</td>
<td>1180</td>
</tr>
<tr>
<td>T2no</td>
<td>21</td>
<td>126</td>
<td>1260</td>
</tr>
<tr>
<td>T2id</td>
<td>20</td>
<td>118</td>
<td>1160</td>
</tr>
<tr>
<td>Total</td>
<td>81</td>
<td>483</td>
<td>4800</td>
</tr>
</tbody>
</table>

23We exclude from the sampling large towns on the main highway of the district.
24We identity the centre by asking village dwellers. This is typically a small square in front of the village temple.
25Each person in sessions with 6 individuals creates 10 dyads (5 per round). Each person in sessions with 5 individuals creates 8 dyads (4 per round).
At the end of the game, participants compile a short questionnaire. We hence have a small set of covariates.26 Average age is 43 years. 95 percent of participants are Hindu, 72 percent do not belong to a scheduled caste, tribe or an other backward caste (OBC), 28 percent of them have completed high school. We also find that average total land holdings are about 4 hectares and average land cultivated is 3.6 hectares. On average, farmers report sharing information about agriculture on a regular basis with 11 other farmers.

Table 3: Summary statistics: individual covariates

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>479</td>
<td>43.41</td>
<td>12.96</td>
<td>22</td>
<td>85</td>
</tr>
<tr>
<td>Hindu</td>
<td>457</td>
<td>.95</td>
<td>.22</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Non backward caste</td>
<td>433</td>
<td>.72</td>
<td>.45</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Completed High School</td>
<td>466</td>
<td>.28</td>
<td>.45</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Land Owned</td>
<td>475</td>
<td>4.07</td>
<td>4.67</td>
<td>.1</td>
<td>50</td>
</tr>
<tr>
<td>Land Cultivated</td>
<td>470</td>
<td>3.6</td>
<td>4.18</td>
<td>.1</td>
<td>45</td>
</tr>
<tr>
<td>Information network size</td>
<td>428</td>
<td>10.9</td>
<td>8.94</td>
<td>1</td>
<td>60</td>
</tr>
</tbody>
</table>

From session 9 onwards,27 we ask each farmers whether he knows each of the other 5 participants and on how many days of the last months he has had a conversation with them. The density of the within-session networks we record is very high: 87 percent of participants know every other farmer in their session. On average, farmers speak on 13.5 days in a month with each of the participant they know.

In tables 6 to 9 in the appendix, we present some regressions that test for covariates balance across treatments. We cannot find any statistically significant difference in average characteristics across treatments.

26When participants fail to answer a question or report an illegible script, we code a missing value. This explains the changing number of observations in table 3.

27This means that we ask this question to 438 individuals in 73 sessions
Table 4: Summary statistics: session networks

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-degree</td>
<td>438</td>
<td>4.78</td>
<td>.76</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Average days spoken with known peers</td>
<td>430</td>
<td>13.44</td>
<td>9.56</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

Degree refers to the reported number of other participants that a player knows. For each known farmer j, we ask farmer i on how many days of the last month he has spoken to farmer j. We compute the average of this variable across all farmers j for each farmer i. In the second row of the table, we average this variable over all farmers i. 8 farmers do not know anybody in the network, so we do not compute this variable for them.

5 Results

We organise our discussion around four key results.

We first investigate overall efficiency. Table 10 summarises treatment-level averages of player reach and the related measure of efficiency for the final network of the game. We pool all sessions with no knowledge of group identity together and compare the distribution of average session efficiency to two simulated benchmarks: the distribution of average session efficiency which would obtain if individuals chose their links at random, and the distribution under ‘efficiency-minded’ link formation (rule 1 in T1, rule 2 in T2). We obtain the following result, which is represented graphically in figure 6 below:

Result 1. Network efficiency in T1no and T2no is 65 percent. This is 31 percentage points below average efficiency under ‘efficiency-minded’ link-formation (rule 1 in T1, rule 2 in T2), and 13 points above average efficiency under random network formation. Both differences are statistically significant.

The efficiency of the experimental networks is 31 percentage points below the average level achieved by the ‘efficiency-minded’ link-formation rules. A Wilcoxon rank-sum test confirms that the difference between the distribution of network efficiency in our data and the simulated distribution is statistically significant at the 1 percent level \(Z = 12.08, p < .001\). On the other hand, the efficiency of the experimental networks is higher by a significant 13 percentage points than the average efficiency which random play would have achieved \(Z = 4.62, p < .001\).

The direction of the flow of benefits associated with the links does not affect average efficiency. Hence the result above is not driven by a lower efficiency in the T2
treatment. Average efficiency across the T1no and T2no treatments is in fact very similar. A Wilcoxon rank sum test cannot reject the null that the outcomes of the two treatments are drawn from the same distribution ($Z = -.11, p = .91$). Figure 7 below presents this result graphically. We predicted that efficiency in T2 would vary in the range between 57 and 96 percent, and that efficiency in T1 would be 96 percent. The prediction for T1 is clearly rejected.

Result 2. Efficiency in T2no sessions is not significantly different from efficiency in T1no sessions.

It is important to note that low efficiency is not an artefact of truncation at 12 turns: efficiency has no monotonic upward trend in either T1no or T2no, and efficiency at turn 12 is only a few percentage points higher than it was at turn 6. Figure 8 illustrates. Falk and Kosfeld [2012], on the other hand, document strong learning dynamics and positive efficiency trends in their experiment.
Efficiency is lower than what any of the rules we specified would have achieved. Further, it is not different across the two treatments. How do these results come about? We can answer this question estimating dyadic regression model 7. Results are reported in table 5.

As hypothesised, we find that in T1no ties are directed towards players with the maximum reach. In T2no, on the other hand, ties are directed towards players with the maximum in-reach and the minimum reach. The effects are highly statistically significant and of a meaningful magnitude. In T1no, player i is 13 percentage points more likely to choose a player with the maximum reach. This amounts to a 40 percent
increase over the probability of choosing a player who does not have the maximum reach. In T2no, player i is 11 percentage points more likely to choose a player with maximum in-reach and 7 percentage points more likely to pick a player with minimum reach. A Wald test cannot reject the equality of these two coefficients.

Table 5: Dyadic linear probability model (7)

<table>
<thead>
<tr>
<th>Panel a</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>max reach<sub>i</sub></td>
<td>.132</td>
<td>.130</td>
<td>.111</td>
<td>.120</td>
</tr>
<tr>
<td></td>
<td>(.001)**</td>
<td>(.001)**</td>
<td>(.006)**</td>
<td>(.002)**</td>
</tr>
<tr>
<td>min in-reach<sub>i</sub></td>
<td>.018</td>
<td>.016</td>
<td>.011</td>
<td>.012</td>
</tr>
<tr>
<td></td>
<td>(.461)</td>
<td>(.627)</td>
<td>(.461)</td>
<td>(.627)</td>
</tr>
<tr>
<td>max in-reach<sub>j</sub></td>
<td></td>
<td></td>
<td>.073</td>
<td>.066</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.078)*</td>
<td>(.142)</td>
</tr>
<tr>
<td>min reach<sub>j</sub></td>
<td>.323</td>
<td>.367</td>
<td>.192</td>
<td>.218</td>
</tr>
<tr>
<td></td>
<td>(.002)**</td>
<td>(.002)**</td>
<td>(.002)**</td>
<td>(.002)**</td>
</tr>
<tr>
<td>Const.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.323</td>
<td>.367</td>
<td>.192</td>
<td>.218</td>
</tr>
<tr>
<td></td>
<td>(.002)**</td>
<td>(.002)**</td>
<td>(.002)**</td>
<td>(.002)**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel b</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>max reach<sub>i</sub> = min in-reach<sub>j</sub></td>
<td>10.34</td>
<td>10.81</td>
<td>.57</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>(.004)**</td>
<td>(.004)**</td>
<td>(.459)</td>
<td>(.304)</td>
</tr>
<tr>
<td>max in-reach<sub>j</sub> = min reach<sub>j</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.57</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.459)</td>
<td>(.304)</td>
</tr>
<tr>
<td>Obs.</td>
<td>1200</td>
<td>910</td>
<td>1260</td>
<td>940</td>
</tr>
<tr>
<td>Sample</td>
<td>T1no</td>
<td>T1no</td>
<td>T2no</td>
<td>T2no</td>
</tr>
<tr>
<td>Cluster N</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Dyadic OLS regression. Dependent variable is a dummy which takes a value of one if i chose to establish a link with j. Each regression contains controls for the round and for each possible pairing of map positions. Confidence: ***, ↔ 99%, ** ↔ 95%, * ↔ 90%.

We confirm the robustness of these results by running a specification that substitutes the dummies with the values of reach and in-reach. This allows players to make mistakes, while requiring larger mistakes to be less likely than smaller mistakes. Table 12 reports the estimates. Results are significant and of a larger magnitude. In T1no, for example, player i is 22 percentage points more likely to choose a player with a reach of 4 than a player with a reach of 0. Given that a player with 0 reach has a probability of being chosen of 27.1 percent, this amounts to an increase by 81 percent.

We summarise this analysis in the following result, which supports prediction 1:
Result 3. In T1no, links to farmers who have the maximum reach in the network are significantly more likely to be formed than other links. In T2no, links to farmers who have the maximum in-reach and to farmers who have the minimum reach are significantly more likely to be formed than other links.

Table 12 shows a further significant effect: in T1no player i is more likely to establish a link with a player with a lower in-reach. A caveat is in order, as, in the previous specification, when we include a dummy for whether an individual has the minimum in-reach we report a positive, but small and insignificant coefficient. This suggests that the effect of in-reach in T1 is probably not substantial. This result is also difficult to explain within our theoretical framework. One possibility is that links carry social value for the person receiving the link proposal. Individuals who choose peers with a low in-reach in T1no could thus be targeting the players who have accumulated the minimum social value in the game so far. We cannot provide a direct test for this interpretation. \(^{28}\) We have however some qualitative evidence in support of it. In the post-play questionnaire farmers are asked the following question: "Do you think that choosing a farmer from your own group is a way of showing respect to him?". 51 percent of farmers answer yes to this question. This is consistent with the view that links carry social value, but represents by no means a full-fledged test.

We define an additional link-formation rule to describe this behaviour:

Rule 4. Form a link with the player with the minimum in-reach.

From now on, we will refer to rule 3 and rule 4 jointly as the ‘Rawlsian’ rules. While result 3 is in line with prediction 1, not all decisions are consistent with the archetypal rules we have proposed. This becomes apparent when we look at the relative frequency of decisions consistent with the various rules. In T1no, 51 percent of decisions are consistent with rule 1 and 63 percent with rule 4. In T2no, 56 percent of decisions are consistent with rule 2 and 68 percent with rule 3.

\(^{28}\)Furthermore, strictly speaking, this motive would lead to a rule targeting the player with the minimum in-degree, unless indirect connections also carry social value.
This exercise, however, poses two problems. First, there are often multiple individuals who satisfy a particular rule. Hence, rules satisfied by a larger number of candidates are selected more frequently when individuals choose randomly or make random mistakes. This makes it difficult to interpret frequencies and to compare different rules. To address this, we calculate the probability of observing a decision consistent with a particular rule when farmers choose links at random. We then calculate a confidence interval around the frequency with which we observe decisions consistent with the same rule in the data. Finally, we check whether the probability of choosing such rule under random play lies below the confidence interval. If so, we are observing a rule being chosen significantly more often than under random play.

Second, the sets of individuals satisfying different rules often overlap. In a line network, for example, the first individual has both the maximum reach and the minimum in-reach. The last individual, on the other hand, has the maximum in-reach and minimum reach. This complicates comparison across rules. To study the extent of the problem we investigate the frequency of overlaps. For each turn, we check whether the sets of potential partners who satisfy the ‘efficiency-minded’ and ‘Rawlsian’ rules are disjoint, partially overlapping, or fully overlapping.\(^{29}\) Results are presented in panel (a) of figure 21 in the appendix. Overlaps are very frequent. We will hence repeat the analysis for the sample turns where the best response sets are not fully overlapping.

Figure 9 presents the analysis for the whole sample. In T1no, both decisions consistent with rule 1 and decisions consistent with rule 4 are observed significantly more often than under random play. While decisions consistent with rule 4 are more frequent, they also have a higher probability of occurring under random play. In T2no, rules 2 and 3 are also observed significantly more often than under random play. These results are basically unaffected if we restrict the analysis to turns where the ‘efficiency-minded’ and ‘Rawlsian’ best response sets are not fully overlapping. As a further robustness check, we also consider the two decisions taken by each player jointly and find that pairs of decisions consistent with a single archetypal rule occur more often

\(^{29}\)Consider turn \(t\) when farmer \(i\) has to play. Let \(BR_1^t, BR_2^t, BR_3^t\) and \(BR_4^t\) be the sets of players who, from the point of view of farmer \(i\), satisfy link-formation rules 1, 2, 3 and 4, respectively. For T1, we focus on \(BR_1^t\) and \(BR_4^t\) and define three mutually exclusive cases:

1. Fully overlapping: \(BR_1^t \cap BR_4^t = BR_1^t = BR_4^t\).
2. Disjoint: \(BR_1^t \cap BR_4^t = \emptyset\).
3. Partially overlapping: not disjoint and not fully overlapping.

For T2, we focus on \(BR_2^t\) and \(BR_3^t\) and similarly define the three cases.
The frequency of ‘efficiency-minded’ and ‘Rawlsian’ links is similar in the T1no and T2no treatments. This explains why these two treatments have close levels of network efficiency. In both T1no and T2no, about 70 percent of decisions are consistent at least one of the archetypal rules. Panel (b) of figure 21 shows this. The majority of these decisions are consistent with both rules, while about 16 percent of links in both treatments satisfy only the ‘Rawlsian’ rule.

What about the remaining 30 percent of links that are not consistent with either rule? We explore two possible additional link-formation rules:

Rule 5. Choose a link to the player who has been chosen by most other players in the current network.

Rule 6. Choose a link to the player who has chosen you in a previous round.

30 We refer to this player as the ‘most popular’ player. In T1, this corresponds to the player with the maximum in-degree. This is the player that is directly observed by the highest number of farmers. In T2 to the player with the maximum degree. This is the player that is directly observing the highest number of farmers. Past links that have been rewired are not included in the computations.

31 We refer to this as the ‘reciprocal’ link-formation rule.
Regression analysis reported in table 13 in the appendix suggests that, in general, rules 5 and 6 do not significantly predict link-formation decisions. Nevertheless, links consistent with rule 5 are observed frequently: 66 percent of decisions that do not follow the ‘efficiency-minded’ or the ‘Rawlsian’ rule target the ‘most popular’ player in the network instead. Reciprocal links are not as common: they occur only in 18 percent of decisions that not consistent with the archetypal rules. Figures 22 and ?? illustrate.

Simulation analysis shows that the largest efficiency gains can be achieved by reducing the proportion of links that are targeted to the ‘most popular’ player, as opposed to reducing the proportion of ‘Rawlsian’ links. We simulate a link formation process where 54 percent of decisions are consistent with rule 1, 16 percent with the rule 4 and the remaining 30 percent with the ‘most popular’ player rule. We then switch increasing proportions of decisions assigned to follow rule 4 to rule 1, keeping the proportion of rule 5 decisions fixed. We repeat the same exercise for rule 5: we switch increasing proportions of decisions assigned to follow rule 5 to rule 1, keeping the proportion of rule 4 decisions fixed. The results are stark: switching all rule 5 decisions to the rule 1 delivers an efficiency gain of 25 percentage points, while an equivalent reduction of ‘Rawlsian’ decisions results only in a 5 percentage points increase. Figure 10 illustrates. In figure 25 in the appendix we present the same simulation, with a different assumption about the baseline proportion of decisions following the various rules. Qualitatively, results are not affected.

32 This reflects the decisions in our data, with two simplifying assumptions: (i) all decisions that are consistent with both rule 1 and rule 4 are assumed to follow the rule 1, (ii) all decisions that are not consistent with the archetypal rules are assumed to follow rule 5.

33 We also know from the simulations reported in figure 16 what would happen if switch all rule 5 decisions to rule 3. This thought experiment corresponds to a simulation where 46 percent of decisions follow rule 3 and 54 percent follow rule 1. Figure 16 shows that network efficiency in such scenario would be above 90 percent, which corresponds to 20 percentage points gain.
Note. In the baseline simulation 54 percent of decisions follow rule 1, 16 percent follow rule 4, and 30 percent follow rule 5. Each point in the graph represents average efficiency over 100 repetitions of the link formation game.

We next turn to the effect of social identity. We start by showing two pieces of evidence which suggest that our group assignment procedure creates salient groups and that subjects believe that a norm prescribing restriction of links to the in-group applies to our link formation game.

Figure 26 in the appendix shows results from the initial allocation task where a player has to divide a sum of money between an in-group and an out-group partner in the following session. The modal allocation in this task is skewed towards the in-group partner. Overall 54 percent of individuals show such in-group bias, while 30 percent choose equal allocations. This shows that the saliency of our experimental groups is sufficient to modify individuals’ allocations. Second, we investigate whether individuals perceive that a norm of homophily applies to behaviour in our game. In all treatments, we ask participants at the end of the game whether they think that a player in this game ‘should’ only link to in-group peers. 57 percent of players answer yes to this question. Furthermore, about 70 percent of players expect at least 3 of the other players (the majority) to answer yes. Table 11 and figure 27 document this. Somewhat in contrast to this, only 38 percent of players expect the last player of the game to choose an in-group link.

Players in T1no and T2no also answer this question, albeit information about group affiliations was not disclosed in these treatments during the link formation game.
Our main result on the identity treatments is the following:

Result 4. In treatments where group identity is disclosed in-group links occur more frequently than in treatment with no knowledge of group identity, while network efficiency does not decrease.

This result confirms the first part of prediction 3. First, in-group links increase. Figure 11 shows a histogram of the number of in-group links in the final network for sessions where group identity is disclosed and session where it is not. The distribution clearly shifts to the right. A Wilcoxon rank-sum test confirms this difference is significant at the 5 percent level (Z = 2.23, p = .02).

Figure 11: In-group links in identity and no-identity treatments

Note: Only links in the final network are considered. ‘No identity’ sessions include T1no and T2no. ‘Identity sessions’ include T1id and T2id.

Second, we cannot detect a systematic effect of disclosing players’ group identity on session level efficiency. Mean efficiency decreases to 58 percent in T1 and essentially stays put in T2. A Wilcoxon rank-sum test cannot reject the equality of the distributions (Z = -0.51, p = .61). This is documented graphically in figure 12.

In order to investigate how disclosure of group identity affects link formation, we run linear probability models of the following form:
Figure 12: Efficiency in identity and no-identity sessions

(a) Histogram
(b) Kernel density estimate and means

\[x_{dis} = \alpha + \beta_1 \text{Identity Session}_s + e_{dis} \] \hspace{1cm} (8)

\[x_{dis} = \alpha + \beta_1 \text{Identity Session}_s + \beta_2 z_{is} + \beta_3 (z_{is} \times \text{Identity Session}_s) + e_{dis} \] \hspace{1cm} (9)

\(x_{dis} \) is an indicator variable which takes the value of 1 if decision d by player i in session s has a certain characteristic. We perform the analysis with three definitions of \(x_{dis} \): whether decision d is a link towards an in-group player, whether decision d is consistent with the ‘efficiency-minded’ rule, and whether decision d is consistent with the ‘Rawlsian’ rule.\(^{35}\) In model 9, we also study whether the effect of being in an identity sections is stronger for certain types of players, for example, players who have allocated more to the in-group partner in the initial allocation task. Standard errors are clustered at the session level. Figure 13 shows graphically the coefficient estimates, while full regression tables are available in the appendix.

In-group links increase in both treatments. However, the effect is significant only for T1. In this condition, links to an in-group player are about 11 percentage points more likely once player group identity is disclosed. This corresponds to a 40 percent increase in the probability of an in-group link. For T2 treatments the effect drops to 5 percentage points and is not significant.

\(^{35}\)As explained above, the ‘efficiency-minded’ rules are rule 1 for T1 and rule 2 for T2. The ‘Rawlsian’ rules are rule 4 for T1, and rule 3 for T2.
The frequency of ‘efficiency-minded’ or ‘Rawlsian’ links is unaffected by the disclosure of group identity in T1. In section 3, we argued that a farmer who derives a limited, but positive benefit from following the social norm may not be prepared to sacrifice his objective in order to conform to the norm. However, when there are both in-group and out-group partners who satisfy his preferred link-formation rule, he will strictly prefer a link to an in-group partner. In this scenario, disclosure of group identity will be associated to: (i) an increase in in-group links, (ii) no change in the relative frequency of ‘efficiency-minded’ and ‘Rawlsian’ links, and (iii) an increase in the proportion of, say, ‘efficiency-minded’ links that are directed towards an in-group partner. We have already presented evidence consistent with effects (i) and (ii). We test for effect (iii) by restricting the sample to ‘efficiency-minded’ decisions in T1 and T2 and running again model 8, with the in-group link dummy as dependent variable. The significant coefficient of 13.8 which we obtain for T1 can be interpreted as the percentage point increase in the probability that an ‘efficiency-minded’ link is directed to an in-group farmer.

Decisions consistent with the two archetypal rules are, on the other hand, observed less frequently in T2. Links towards players with maximum in-reach drop by 9 percentage points (a 17 percent fall with respect to the baseline probability of such links in T2no). The effect is however only significant at the 15 percent level. Links towards players with minimum reach also decrease by an insignificant 4 percentage points.

These results suggest that disclosure of group identity may operate through different mechanisms in the two treatments. We are unable to shed more light on these mechanisms through estimation of model 9: the effect of group identity disclosure on the likelihood of choosing an in-group link is not stronger for individuals who show in-group bias in the allocation task, who agree with the norm of homophily, or who expect more peers to agree with the norm of homophily.36

We have not said much about understanding so far. The last set of results we report shows that the likelihood of choosing a link consistent with any of the rules we have discussed is generally not correlated with the number of correct answers players give in the initial understanding questions. We show this using the following regression model:

36In future work, we plan to attempt estimation of a structural mixture model of link selection, which allows for different link formation objectives in the population.
Figure 13: Linear probability model (8): coefficient estimates

Note. Coefficients estimates from linear probability model 8. The dependent variable is indicated below each graph. The regression in graph (d) is run over a sample restricted to include only ‘efficiency-minded’ links. Standard error are clustered at session level. Full regression results are reported in tables 14, 15, 16, and 17.
\[x_{\text{dis}} = \alpha + \beta_1 \text{Identity Session}_i \]
\[+ \beta_2 (\text{understanding}_i \ast \text{Identity Session}=0) \]
\[+ \beta_3 (\text{understanding}_i \ast \text{Identity Session}=1) + e_{\text{dis}} \]

\(\text{understanding}_i\) is the z-score of the number of correct answers players give in the initial understanding questions. \(\beta_2\) captures whether high understanding subjects are more likely to choose links consistent with strategy x in sessions where group identity is not disclosed. \(\beta_3\) measures whether high understanding subjects are more likely to choose links consistent with strategy x in sessions where group identity is disclosed. Tables 20 and reports results of separate estimations of model 10 for T1 and T2. The only significant result is that in sessions where group identity is disclosed, players with a higher understanding z-score are less likely to link to the player who has been chosen most frequently. The coefficient is only significant at the 10 percent level and small in magnitude: a standard deviation increase in understanding is associated with a decrease in the likelihood of a link towards the ‘most popular’ player of 4 percentage point, corresponding to 10 percent reduction in this probability.
6 Conclusion

Social networks play an important role in the diffusion of innovations such as new agricultural technologies, health schemes or financial products. Theoretical models show that in games of unilateral, one way flow link formation, myopic, selfish individuals can converge to efficient networks after repeated play [Bala and Goyal, 2000]. We offer the first experimental test of this prediction for a non-western population- a sample of farming communities in rural India. This is a policy-relevant setting: interest for new, cost-effective intervention designs that promote the diffusion of agricultural technology is currently high in India. We make a second contribution to the literature by exploring how a pervasive feature of the social world, group categorisation, affects the way networks are formed.

We find that the efficiency of the networks formed in our experiment is significantly and substantially lower than the level of efficiency which myopic selfish play would have achieved. While many farmers choose welfare-enhancing links, large efficiency losses come about because a minority group of farmers chooses to link with the ‘most popular’ farmer in the network. When information about group membership is disclosed, more in-group links are formed, but networks do not become significantly less efficient.

Inefficiently structured networks can limit the diffusion of information about new technologies and hence their adoption. This creates a rationale for development policies that support the diffusion of socially beneficial innovations. Interventions can bypass social structures altogether and rely instead on modern technologies. Recent trials show that agronomic information transmitted via SMS, phone lines and voice messages can be effective at increasing yields, and discouraging the use of inefficient pesticides [Cole and Fernando, 2012, Casaburi et al., 2014]. Alternatively, interventions can try to strengthen peer-to-peer transmission by incentivising farmers to share information [Ben Yishay and Mobarak, 2012] or by fostering the creation of new links [Vasilaky and Leonard, 2013].

Future work can use artefactual link-formation field experiments to inform the development of diffusion policy in two ways. First, it can further explore link-formation heuristics in specific settings. Program design should ensure compatibility with those heuristics. For example, where individuals preferentially attach to the ‘most popular’ farmers, peer-to-peer extension programs can rely on a few, prominent injection points. Where links are reciprocal and less centralised, different models may be required. Sec-
ond, experimental designs can help develop our understanding of how social features impact network formation and potentially limit peer-to-peer diffusion. Further study of the effects of group categorisation using natural groups is required. Within-group status differentiation offers a second important avenue for exploration.
References

Bassel Tarbush and Alexander Teytelboym. Friending. 2014.

Kathryn Vasilaky and Kenneth Leonard. As good as the networks they keep?: Improving farmers’ social networks via randomized information exchange in rural uganda. March 2013.

7 Appendix

7.1 Formal derivation of the rules

7.1.1 Notation

We define some basic notation following Goyal [2007]. Let $N = (1, 2, \ldots, n)$ be the set of players. In T1, each player i chooses a (pure) strategy $g_i = (g_{i1}, g_{i2}, \ldots, g_{ii-1}, g_{ii+1}, \ldots, g_{in})$\(^{37}\), which is a vector of directed links $g_{ij} \in \{0, 1\}$. In T2, on the other hand, every player chooses a strategy $g_i = (g_{1i}, g_{2i}, \ldots, g_{ii-1}, g_{ii+1}, \ldots, g_{ni})$, a vector of directed links $g_{ji} \in \{0, 1\}$. Let Γ_i be the set of possible values of g_i.\(^{38}\) $\Gamma = \Gamma_1 \times \Gamma_2 \times \ldots \times \Gamma_n$ is the set of all possible combinations of player strategies. The vector of player strategies $g = (g_1, g_2, \ldots, g_n)$, drawn from Γ, can be represented as a directed network. $g + ij$ is the network obtained from adding the link $g_{ij} = 1$ to network g.

In our game player i receives the prize if he is the winner of the prize lottery, or if he is connected to the winner via a path of links. A path from player i to player j is a set of links such that: $g_{iy} = g_{yw} = \ldots = g_{xz} = 1$. A direct link is a path of length 1. The notation $i \rightarrow^8 j$ indicates that in network g there is a path from i to j. If the path $i \rightarrow^8 j$ exists, we say that play i reaches player j network g. In this case, player i is assigned the prize whenever player j is assigned the prize. A path $i \rightarrow^8 j$, on the other hand, has no implication on whether player j is assigned the prize when player i is assigned the prize.

We need to introduce two crucial concepts for our analysis. First, let $N_j(g) = \{k \in N \mid j \rightarrow^g k\}$ and $\mu_j(g) = |N_j(g)|$. $\mu_j(g)$ represents the number of players whom player j reaches in network g. Sometimes we want to exclude from the count the path from player j to player i. Let $N_{ji}(g) = \{k \in N \setminus j \mid i \rightarrow^g k\}$ and $\mu_{ji}(g) = |N_{ji}(g)|$. $\mu_{ji}(g)$ is the number of players whom player j reaches in network g, excluding player i. We call $\mu_{ji}(g)$ the reach of player j in network g.

Second, let $N_{-j}(g) = \{k \in N \mid k \rightarrow^g j\}$ and $\mu_{-j}(g) = |N_{-j}(g)|$. $\mu_{-j}(g)$ represents the number of players who reach player j in network g. Again, we sometimes need to exclude the path from player i to player j. Let $N_{-ji}(g) = \{k \in N \setminus i \mid k \rightarrow^g j\}$ and $\mu_{-ji}(g) = |N_{-ji}(g)|$. $\mu_{-ji}(g)$ is the number of players who reach player j in network g, excluding player i. We call $\mu_{-ji}(g)$ the in-reach of player j in network g.

\(^{37}\)Link from player i to player i are ruled out.
\(^{38}\)In both T1 and T2, we impose that at most one link can be equal to 1. Thus, there are n possible values of g_i: n-1 possible links plus the strategy of establishing no links at all.
The notions of μ_j and μ_{-j} should not be confused with the most common notions of out-degree and in-degree, which represent the number of direct links of a player in the network.39

Network g determines an expected payoff $\pi_j(g)$ for each player. This is simply calculated as the value of the prize, which we normalise to 1, times the probability of winning the prize, which is equal to the fraction of players accessed by player j:

$$\pi_j(g) = \frac{1 + \mu_j(g)}{n} \quad (11)$$

7.1.2 Rule 1

We assume that in T1 player i chooses strategy g_i to maximise expected payoff. That is, he has to pick the partner j such that:

$$\max_j \pi_i(g + ij) \quad (12)$$

Notice that when i has the turn $N_i(g) = \{\emptyset\}$ and $\mu_i(g) = 0$. In the first round of the game g_i has all of its entries equal to zero. In the second round, the decision maker has to consider the game as if g_i had only zero entries, as the link specified in the first round is removed once he declares his second-round strategy.

Proposition 1. Player i maximises $\pi_i(g + ij)$ by choosing the partner with the maximum value of $\mu_{ji}(g)$ in the network g.

Proof. Rewrite $\pi_i(g + ij)$ as: $\frac{1 + \mu_i(g + ij)}{n}$. Notice that, as $\mu_i(g) = 0$, $\mu_i(g + ij) = 1 + \mu_{ji}(g)$. Thus $\pi_i(g + ij) = \frac{2 + \mu_{ji}(g)}{n}$, which is monotonically increasing in $\mu_{ji}(g)$. \square

7.1.3 Rule 2

Let player i in T1 have a utility function (3). The gain in utility obtained from a g_{ji} link can be summarised as follows:

39The formal definitions of out-degree and in-degree are as follows. Let $N_i^d(g) = \{j \in N | g_{ij} = 1\}$ be the set of players with whom player i is directly linked. $\mu_i^d = |N_i^d(g)|$ is the number of players to whom with whom player i is directly linked. This is the out-degree of player i. $N_i^a(g) = \{j \in N | g_{ji} = 1\}$, on the other hand, is the set of players j such that $g_{ji} = 1$. $\mu_i^a = |N_i^a(g)|$ is the in-degree: the number of players who have a direct link to i.
\[u_i(g + ji) - u_i(g) = \pi_i(g + ji) - \pi_i(g) + \gamma \sum_{k \in N \setminus i} \pi_k(g + ji) - \pi_k(g) \]

\[= \gamma \sum_{k \in N \setminus i} \pi_k(g + ji) - \pi_k(g) \]

\[= \gamma f(g + ji) \] (13)

where \(f(g + ji) = \sum_{k \in N \setminus i} \pi_k(g + ji) - \pi_k(g) \) in T2 a link as no effect on player i’s reach, nor on his effected payoff. However, player i has a preference for links that maximise the increase in the expected payoff of the other players. \(f(g + ji) \) measures the increase in expected payoff for the other players. To study how \(f(g + ji) \) is related to player j’s position in the network, there are two cases we need to consider.

Case 1: \(j \notin N_i(g) \). Here \(f(g + ji) \) can be simply expressed as:

\[(\mu_i(g) + 1) (\mu_{-ji}(g) + 1) \] (14)

To derive (14), we first need to show the following property of networks in T2.

Lemma 1. In T2, when it is player i’s turn to play, if \(j \notin N_i(g) \), no player in \(j \cup N_{-j}(g) \) reaches a player in \(i \cup N_i(g) \).

Proof of lemma. We refer to \(g_{ij} = 1 \) as an ‘outgoing’ link for player i and \(g_{ji} = 1 \) as an ‘incoming’ link. In T2, players can have have multiple ‘outgoing’ links, but can have at most one ‘incoming’ link. When it is player i’s turn to play, player i has no ‘incoming’ links. He may have one or more ‘outgoing’ links, in which case \(N_i(g) \) is nonempty. Every individual k in \(N_i(g) \) has exactly one ‘incoming’ link. This ‘incoming’ link is either a link with i \((g_{ik} = 1) \), or it is a link with a third player z in \(N_i(g) (i \rightarrow z) \). Thus, no player in the set \(i \cup N_i(g) \) has an ‘incoming’ link with a player outside the set \(i \cup N_i(g) \). If a player j is not in \(N_i(g) \), he cannot reach any player in \(i \cup N_i(g) \).

Furthermore for \(j \notin N_i(g) \), \(i \cup N_i(g) \cap N_{-j}(g) = \emptyset \). Player i does not reach player j. Further, No player reached by player i reaches player j. If some player reached by player i reaches player j, then player j would be part of \(N_i(g) \), which contradicts \(j \notin N_i(g) \). This concludes the proof. □
If \(j \notin N_i(g) \), and player i sets \(g_{ji} = 1 \), player j now reaches player i and all players in \(N_i(g) \). Lemma 1 tells us that none of the players in \(N_i(g) \) was previously reached by player j. In other words, each individual in \(N_i(g) \) allows player j to observe new information. Player j’s expected payoff increases by \(\mu_i(g) + 1 \).

When player i sets \(g_{ji} = 1 \), all individuals in \(N_{-j}(g) \) now reach player i and all players in \(N_i(g) \). Lemma 1 tells us that none of the players in \(N_i(g) \) was previously reached by any player in \(N_{-j}(g) \). The expected payoff of each player in \(N_{-j}(g) \) also goes up by \(\mu_i(g) + 1 \). So the sum of expected payoff among players increases by \((\mu_i(g) + 1)(\mu_{-ji}(g) + 1) \). We can express the increase in expected payoff also as:

\[
(\mu_i(g) + 1)(\mu_{-ji}(g) + 1)
\]

Case 2: \(j \in N_i(g) \). Now \(g_{ji} = 1 \) link creates a cycle. The effect on \(f(g + ji) \) is smaller than that of a link to a player outside of \(N_i(g) \) who has the same in-reach. This is because some of the information that player j shares with the players who reach him is redundant. Figure 14 shows this with an example. In the example, player A has a reaches player C through player B. If player A links to player C, player C now reaches both A and B, and hence \(\mu_C \) increases by 2. \(\mu_B \), however, increases by 1 only, as player B already observes player C. In other words, some of the information given to player B is redundant. 40

The simple heuristic of choosing the player with the maximum in-reach approximates well the more complicated rule which would calculate \(f(g + ji) \) for every possible partner j and pick the partner with the highest value of \(f(g + ji) \).

1. When \(N_i(g) = \emptyset \), \(f(g + ji) \) monotonically increases in \(j \)'s in-reach. In this case, rule 2 maximises \(f(g + ji) \).

2. When \(N_i(g) \neq \emptyset \) and no player with maximum in-reach is in the \(N_i(g) \) set, rule 2 maximises \(f(g + ji) \).

40 If \(N_i(g) \) is a line, when player i creates a link to a player \(j \in N_i(g) \), the first player in the \(i \rightarrow j \) path, call him k, experiences an increase in \(\mu_k(g) \) of 1, the second player an increase of 2, and so on. until we to get to player j, who gets an increase in \(\mu_j(g) \) of \(\mu_{-ji}(g) + 1 \). Thus we can express \(f(g + ji) \) as

\[
\begin{align*}
 f(g + ij) &= \sum_{n=1}^{\mu_{-ji} + 1} n \\
 &= \frac{(\mu_{-ji} + 1)(\mu_{-ji} + 2)}{2} \\
\end{align*}
\]

If \(N_i(g) \) is a tree, this expression would become more complicated.
3. When $N_i(g) \neq \emptyset$ and at least some of the players in the set of individuals with maximum in-reach are in $N_i(g)$, rule 2 sometimes fails to maximise $f(g + ji)$. The latter occurs when a link to a player outside of $N_i(g)$ who does not have maximum in-reach has a larger effect on $f(g + ji)$ than a link to a player in $N_i(g)$ with maximum in-reach. Rule 2 would suggest the wrong partner here.

To minimise the likelihood of the third scenario, we formulate rule 2 in terms of $\mu_{-ji}(g)$, as opposed to $\mu_{-ji}(g)$. That is, we do not consider player i in the count of player j's in-reach. This only penalises players in $N_i(g)$, and makes it less likely that rule 2 selects them when players outside of $N_i(g)$ with a higher potential impact on $f(g + ji)$ are available.
Figure 15: Example of a network

(a) Network g

(b) Rule 2: Maximum in-reach

(c) Rule 3: Minimum reach

E has the turn. The probability of winning the prize is reported next to each player. Panel (b) and (c) show network $g + ji$, where the new link is chosen following link-formation rule 2 or link-formation rule 3.
7.2 Figures

Figure 16: Link formation process with mixed rules

Simulation where rule 3 is played with probability \(p \) and rule 2 with probability \(1-p \). 500 simulation for each level of \(p \).

Figure 17: Simulated time series of average reach

Each rule is simulated 500 times.
Figure 18: Simulated effect of group identity concerns on network structure

(a) Rule 2

(b) Rule 3

Weight 0 simulations show efficiency when all players play rule 2 (panel a) or rule 3 (panel b). Weight 2 simulations show efficiency when players value a link to an in-group player as much as 2 units of in-reach (panel a) or two units of reach (panel b). We report results summarising 100 simulation for each of the 4 rules.

Figure 19: Cumulative distribution of mistakes in understanding questions

(a) T1

(b) T2
Figure 20: Efficiency in no-identity sessions and under rule 1

(a) Histogram

(b) Kernel density estimate and means

Figure 21: Overlap in decisions and in choice sets

(a) Best response sets

(b) Decisions
Figure 22: What explains links that are not consistent with the archetypal rules?

(a) Links to the ‘most popular’ player
(b) ‘Reciprocal’ links

The category ‘most popular’ shows the relative frequency of decisions consistent with rule 5 and not consistent with the ‘efficiency-maximising’ and ‘Rawlsian’ rules. The category ‘reciprocal’ shows relative frequency of decisions consistent with rule 6 and not consistent with the ‘efficiency-maximising’ and ‘Rawlsian’ rules. Only data for sessions with no knowledge of group identity is shown.

Figure 23: Relative frequency of decisions consistent with the hypothesised rules. Best Response Sets not fully overlapping

(a) T1
(b) T2

T1 sessions: rounds in which the set of individuals with maximum reach is not perfectly overlapping with the set of individuals with minimum in-reach. T2 sessions: rounds in which the set of individuals with maximum in-reach is not perfectly overlapping with the set of individuals with minimum reach.
Figure 24: Relative frequency of individuals who play twice consistently with the hypothesized rules

Figure 25: Efficiency simulation

In the baseline simulation 5 percent of decisions follow rule 1, 65 percent follow rule 4, and 30 percent follow rule 5.
Figure 26: Distribution of coin allocations to in-group partner

Figure 27: ‘How many of the other 5 players in the session do you think answered YES to the previous question?’ Distribution of expectations
7.3 Tables

Table 6: Balance test: identity sessions

<table>
<thead>
<tr>
<th>Age</th>
<th>Edu</th>
<th>UpperCaste</th>
<th>LandOwned</th>
<th>LandCult</th>
<th>NetSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Identity</td>
<td>-.194</td>
<td>.029</td>
<td>-.087</td>
<td>.063</td>
<td>.101</td>
</tr>
<tr>
<td></td>
<td>(1.764)</td>
<td>(.056)</td>
<td>(.067)</td>
<td>(.517)</td>
<td>(.468)</td>
</tr>
<tr>
<td>Obs.</td>
<td>479</td>
<td>466</td>
<td>433</td>
<td>475</td>
<td>470</td>
</tr>
</tbody>
</table>

OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if respondent is not from a schedule caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported number of peers with whom the farmer exchanges advice on agricultural matters. Confidence: *** ↔ 99%, ** ↔ 95%, * ↔ 90%. Standard errors clustered at the session level reported in parentheses.

Table 7: Balance test: T2 sessions

<table>
<thead>
<tr>
<th>Age</th>
<th>Edu</th>
<th>UpperCaste</th>
<th>LandOwned</th>
<th>LandCult</th>
<th>NetSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>T2</td>
<td>-1.582</td>
<td>-.028</td>
<td>-.052</td>
<td>-.085</td>
<td>-.049</td>
</tr>
<tr>
<td></td>
<td>(1.761)</td>
<td>(.056)</td>
<td>(.068)</td>
<td>(.514)</td>
<td>(.465)</td>
</tr>
<tr>
<td>Obs.</td>
<td>479</td>
<td>466</td>
<td>433</td>
<td>475</td>
<td>470</td>
</tr>
</tbody>
</table>

OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if respondent is not from a schedule caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported number of peers with whom the farmer exchanges advice on agricultural matters. Confidence: *** ↔ 99%, ** ↔ 95%, * ↔ 90%. Standard errors clustered at the session level reported in parentheses.

Table 8: Balance test: identity sessions in T1

<table>
<thead>
<tr>
<th>Age</th>
<th>Edu</th>
<th>UpperCaste</th>
<th>LandOwned</th>
<th>LandCult</th>
<th>NetSize</th>
<th>Und</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>Identity</td>
<td>-2.378</td>
<td>.091</td>
<td>-.040</td>
<td>.077</td>
<td>.141</td>
<td>.111</td>
</tr>
<tr>
<td></td>
<td>(2.544)</td>
<td>(.081)</td>
<td>(.098)</td>
<td>(.737)</td>
<td>(.657)</td>
<td>(1.102)</td>
</tr>
<tr>
<td>Obs.</td>
<td>235</td>
<td>232</td>
<td>215</td>
<td>234</td>
<td>231</td>
<td>211</td>
</tr>
</tbody>
</table>

OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if respondent is not from a schedule caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported number of peers with whom the farmer exchanges advice on agricultural matters. Und is the number of mistakes in the initial 7 understanding questions. Confidence: *** ↔ 99%, ** ↔ 95%, * ↔ 90%. Standard errors clustered at the session level reported in parentheses.
Table 9: Balance test: identity sessions in T2

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Edu</th>
<th>UpperCaste</th>
<th>LandOwned</th>
<th>LandCult</th>
<th>NetSize</th>
<th>Und</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>1.879</td>
<td>-.033</td>
<td>-.135</td>
<td>.046</td>
<td>.061</td>
<td>-.482</td>
<td>-.224</td>
</tr>
<tr>
<td></td>
<td>(2.400)</td>
<td>(.076)</td>
<td>(.093)</td>
<td>(.733)</td>
<td>(.673)</td>
<td>(1.877)</td>
<td>(.197)</td>
</tr>
<tr>
<td>Obs.</td>
<td>244</td>
<td>234</td>
<td>218</td>
<td>241</td>
<td>239</td>
<td>217</td>
<td>246</td>
</tr>
</tbody>
</table>

OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if respondent is not from a schedule caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported number of peers with whom the farmer exchanges advice on agricultural matters. Und is the number of mistakes in the initial 8 understanding questions.

Confidence: *** ↔ 99%, ** ↔ 95%, * ↔ 90%. Standard errors clustered at the session level reported in parentheses.

Table 10: Reach and efficiency in final networks

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average reach</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1no</td>
<td>3.258</td>
<td>.652</td>
</tr>
<tr>
<td>T1id</td>
<td>2.895</td>
<td>.582</td>
</tr>
<tr>
<td>T2no</td>
<td>3.238</td>
<td>.648</td>
</tr>
<tr>
<td>T2id</td>
<td>3.333</td>
<td>.666</td>
</tr>
<tr>
<td>Total</td>
<td>3.167</td>
<td>.637</td>
</tr>
</tbody>
</table>

Table 12: Dyadic linear probability model (7)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>reach<sub>i</sub></td>
<td>.054</td>
<td>.055</td>
<td>-.042</td>
<td>-.039</td>
</tr>
<tr>
<td></td>
<td>(.001)***</td>
<td>(.001)***</td>
<td>(.001)***</td>
<td>(.014)**</td>
</tr>
<tr>
<td>in-reach<sub>i</sub></td>
<td>-.033</td>
<td>-.031</td>
<td>.052</td>
<td>.051</td>
</tr>
<tr>
<td></td>
<td>(.099)***</td>
<td>(.092)*</td>
<td>(.001)***</td>
<td>(.002)***</td>
</tr>
<tr>
<td>Const.</td>
<td>.373</td>
<td>.395</td>
<td>.264</td>
<td>.279</td>
</tr>
<tr>
<td></td>
<td>(.002)***</td>
<td>(.006)***</td>
<td>(.002)***</td>
<td>(.094)*</td>
</tr>
<tr>
<td>Obs.</td>
<td>1200</td>
<td>910</td>
<td>1260</td>
<td>940</td>
</tr>
<tr>
<td>Cluster N</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Sample</td>
<td>T1no</td>
<td>T1no</td>
<td>T2no</td>
<td>T2no</td>
</tr>
</tbody>
</table>

Dyadic OLS regression. Dependent variable is a dummy which takes a value of one if i chose to establish a link with j. Each regression contains controls for the round and for each possible pairing of map positions. Regressions in columns 2 and 4 include controls for age, land owned, land cultivated, number of contacts in real information networks, number of mistakes in the initial understanding questions and dummies for having completed secondary education, for being Hindu, and for not belonging to a backward caste.

Confidence: *** ↔ 99%, ** ↔ 95%, * ↔ 90%. Standard errors corrected for clustering at session level. P-values obtained with wild bootstrap-t procedure reported in parentheses.
Table 11: Summary statistics of allocation, expectations and norms

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount allocated to in-group partner</td>
<td>483</td>
<td>36.066</td>
<td>11.659</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>In-group bias in allocation</td>
<td>483</td>
<td>.542</td>
<td>.499</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Agrees with norm of homophily</td>
<td>483</td>
<td>.571</td>
<td>.495</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>No. other players expected to agree with the norm</td>
<td>478</td>
<td>3.513</td>
<td>1.309</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Expects last link to be an in-group link</td>
<td>402</td>
<td>.385</td>
<td>.487</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

‘Amount allocated to in-group partner’ is the number of Rupees, out of 60, allocated to the in-group partner in the initial allocation task. ‘In-group bias in allocation’ is a dummy equal to 1 if the player has allocated more than half of the endowment to the in-group partner in the allocation task. ‘Agrees with norm of homophily’ is a dummy equal to 1 if the player answered yes to the question ‘In the link formation game you have just played, do you think a player should only link to a peer of his own group?’. ‘No. other players expected to agree with the norm’ is the answer to the question ‘How many of the other 5 players in the session do you think answered YES to the previous question?’. There is 1 missing value. We also set to missing answers that are greater than 5. ‘Expects last link to be an in-group link’ is a dummy equal to 1 if the respondent expects the player with the last turn choose an in-group link. This variable excludes the 81 players who have the last turn in the session.

Table 13: Dyadic linear probability model (7)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>max reach<sub>j</sub></td>
<td>.121</td>
<td>.122</td>
</tr>
<tr>
<td></td>
<td>(.012)**</td>
<td>(.022)**</td>
</tr>
<tr>
<td>min in-reach<sub>j</sub></td>
<td>-.0004</td>
<td>.059</td>
</tr>
<tr>
<td></td>
<td>(.931)</td>
<td>(.202)</td>
</tr>
<tr>
<td>max in-reach<sub>j</sub></td>
<td>-.093</td>
<td>-.011</td>
</tr>
<tr>
<td></td>
<td>(.006)**</td>
<td>(.399)</td>
</tr>
<tr>
<td>min reach<sub>j</sub></td>
<td>-.031</td>
<td>-.011</td>
</tr>
<tr>
<td></td>
<td>(.308)</td>
<td>(.685)</td>
</tr>
<tr>
<td>Reciprocal<sub>ij</sub></td>
<td>-.093</td>
<td>-.010</td>
</tr>
<tr>
<td></td>
<td>(.006)**</td>
<td>(.399)</td>
</tr>
<tr>
<td>Most popular<sub>j</sub></td>
<td>-.031</td>
<td>-.011</td>
</tr>
<tr>
<td></td>
<td>(.308)</td>
<td>(.685)</td>
</tr>
<tr>
<td>Const.</td>
<td>.402</td>
<td>.225</td>
</tr>
<tr>
<td></td>
<td>(.001)**</td>
<td>(.036)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>910</td>
<td>940</td>
</tr>
<tr>
<td>Sample</td>
<td>T1no</td>
<td>T2no</td>
</tr>
<tr>
<td>Cluster N</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Controls</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Dyadic OLS regression. Dependent variable is a dummy which takes a value of one if i chose to establish a link with j. Each regression contains controls for the round and for each possible pairing of map positions. Confidence: *** $⇔$ 99%, ** $⇔$ 95%, * $⇔$ 90%.

Standard errors corrected for clustering at session level. P-values obtained with wild bootstrap-t procedure reported in parentheses.

Panel b reports the F statistics (and p value in parenthesis) for a Wald test of the equality of coefficients.
Table 14: Linear probability model (8): in-group links

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity session</td>
<td>.117</td>
<td>.046</td>
</tr>
<tr>
<td></td>
<td>(.055) *</td>
<td>(.056)</td>
</tr>
<tr>
<td>Const.</td>
<td>.282</td>
<td>.268</td>
</tr>
<tr>
<td></td>
<td>(.037) **</td>
<td>(.033) ***</td>
</tr>
<tr>
<td>Obs.</td>
<td>438</td>
<td>447</td>
</tr>
<tr>
<td>Sample</td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>Cluster N</td>
<td>40</td>
<td>41</td>
</tr>
</tbody>
</table>

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards an in-group partner. First turn, first round decisions are dropped. Confidence: ***(↔) 99%, **(↔) 95%, *(↔) 90%. Standard errors clustered at the session level reported in parentheses.

Table 15: Linear probability model (8): efficiency-minded links

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity session</td>
<td>-.0003</td>
<td>-.080</td>
</tr>
<tr>
<td></td>
<td>(.065)</td>
<td>(.062)</td>
</tr>
<tr>
<td>Const.</td>
<td>.473</td>
<td>.519</td>
</tr>
<tr>
<td></td>
<td>(.044) **</td>
<td>(.045) ***</td>
</tr>
<tr>
<td>Obs.</td>
<td>438</td>
<td>447</td>
</tr>
<tr>
<td>Sample</td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>Cluster N</td>
<td>40</td>
<td>41</td>
</tr>
</tbody>
</table>

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards a partner with the maximum out-degree (in T1) and maximum in-degree (in T2). First turn, first round decisions are dropped. Confidence: ***(↔) 99%, **(↔) 95%, *(↔) 90%. Standard errors clustered at the session level reported in parentheses.

Table 16: Linear probability model (8): Rawlsian links

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity session</td>
<td>-.013</td>
<td>-.038</td>
</tr>
<tr>
<td></td>
<td>(.055)</td>
<td>(.055)</td>
</tr>
<tr>
<td>Const.</td>
<td>.600</td>
<td>.649</td>
</tr>
<tr>
<td></td>
<td>(.033) **</td>
<td>(.036) ***</td>
</tr>
<tr>
<td>Obs.</td>
<td>438</td>
<td>447</td>
</tr>
<tr>
<td>Sample</td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>Cluster N</td>
<td>40</td>
<td>41</td>
</tr>
</tbody>
</table>

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards a partner with the minimum in-degree (in T1) and minimum out-degree (in T2). First turn, first round decisions are dropped. Confidence: ***(↔) 99%, **(↔) 95%, *(↔) 90%. Standard errors clustered at the session level reported in parentheses.
Table 17: Linear probability model (8): in-group links

<table>
<thead>
<tr>
<th>Identity session</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.139</td>
<td>.053</td>
</tr>
<tr>
<td></td>
<td>(.066)**</td>
<td>(.079)***</td>
</tr>
<tr>
<td>Const.</td>
<td>.298</td>
<td>.242</td>
</tr>
<tr>
<td></td>
<td>(.048)***</td>
<td>(.051)***</td>
</tr>
</tbody>
</table>

Restricted sample

<table>
<thead>
<tr>
<th>Obs.</th>
<th>207</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>Cluster N</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards an in-group partner. Sample restricted to 'efficiency-minded' links. First turn, first round decisions are dropped. Confidence: *** ↔ 99%, ** ↔ 95%, * ↔ 90%. Standard errors clustered at the session level reported in parentheses.

Table 18: Linear probability model (9): in-group links T1 treatment

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity session, s</td>
<td>.095</td>
<td>.133</td>
<td>-.014</td>
</tr>
<tr>
<td></td>
<td>(.073)</td>
<td>(.077)</td>
<td>(.115)</td>
</tr>
<tr>
<td>Bias in allocation task, i</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.084)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias, * Identity session, s</td>
<td>.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.124)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homophily Norm, i</td>
<td></td>
<td>.055</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.080)</td>
<td></td>
</tr>
<tr>
<td>Norm, *Identity session, i</td>
<td></td>
<td>-.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.097)</td>
<td></td>
</tr>
<tr>
<td>Homophily norm expectation, i</td>
<td></td>
<td>-.014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.024)</td>
<td></td>
</tr>
<tr>
<td>Norm expectation, *Identity session, i</td>
<td></td>
<td>.040</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.032)</td>
<td></td>
</tr>
<tr>
<td>Ingroup link expectation, i</td>
<td></td>
<td></td>
<td>.074</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.072)</td>
</tr>
<tr>
<td>Link expectation, *Identity session, i</td>
<td></td>
<td></td>
<td>-.133</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.107)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs.</th>
<th>438</th>
<th>437</th>
<th>435</th>
<th>371</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>T1</td>
<td>T1</td>
<td>T1</td>
<td>T1</td>
</tr>
<tr>
<td>Cluster N</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards an in-group partner. "Bias in allocation task" is a dummy equal to one if the player has allocated more than half of the dictator endowment to the in-group partner. "Homophily norm" is a dummy equal to one if the player has agreed with the statement of the norm of homophily. "Homophily norm expectation" captures the number of other players that the individual expects to agree with the norm of homophily. "in-group link expectation" is a dummy equal to one if the player expects the last player to choose an in-group link. First turn, first round decisions are dropped. Confidence: *** ↔ 99%, ** ↔ 95%, * ↔ 90%. Standard errors clustered at the session level reported in parentheses.
Table 19: Linear probability model (9): in-group links T2 treatment

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity session</td>
<td>.014</td>
<td>.001</td>
<td>-.080</td>
<td>.024</td>
</tr>
<tr>
<td></td>
<td>(.080)</td>
<td>(.073)</td>
<td>(.133)</td>
<td>(.060)</td>
</tr>
<tr>
<td>Bias in allocation task</td>
<td>-.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.074)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias * Identity session</td>
<td>.054</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.111)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homophily norm</td>
<td></td>
<td>-.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.082)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norm * Identity session</td>
<td></td>
<td>.083</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homophily norm expectation</td>
<td></td>
<td>-.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norm expectation * Identity session</td>
<td></td>
<td>.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.040)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingroup link expectation</td>
<td></td>
<td></td>
<td></td>
<td>.018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.064)</td>
</tr>
<tr>
<td>Link expectation * Identity session</td>
<td></td>
<td>.178</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.100)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>447</td>
<td>447</td>
<td>440</td>
<td>371</td>
</tr>
<tr>
<td>Sample</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>Cluster N</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards an in-group partner. “Bias in allocation task” is a dummy equal to one if the player has allocated more than half of the dictator endowment to the in-group partner. “Homophily norm” is a dummy equal to one if the player has agreed with the statement of the norm of homophily. “Homophily norm expectation” captures the number of other players that the individual expects to agree with the norm of homophily. “in-group link expectation” is a dummy equal to one if the player expects the last player to choose an in-group link. First turn, first round decisions are dropped. Confidence: *** \leftrightarrow 99%, ** \leftrightarrow 95%, * \leftrightarrow 90%. Standard errors clustered at the session level reported in parentheses.

Table 20: Linear probability model: understanding in T1

<table>
<thead>
<tr>
<th></th>
<th>Rule 1</th>
<th>Rule 4</th>
<th>Reciprocal</th>
<th>Most Popular</th>
<th>Ingroup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Identity session</td>
<td>-.008</td>
<td>-.030</td>
<td>-.086</td>
<td>.120</td>
<td>.105</td>
</tr>
<tr>
<td></td>
<td>(.065)</td>
<td>(.069)</td>
<td>(.043)**</td>
<td>(.052)**</td>
<td>(.085)</td>
</tr>
<tr>
<td>Understanding, * Identity session, = 0</td>
<td>.016</td>
<td>-.003</td>
<td>-.035</td>
<td>.032</td>
<td>-.010</td>
</tr>
<tr>
<td></td>
<td>(.034)</td>
<td>(.041)</td>
<td>(.023)</td>
<td>(.029)</td>
<td>(.034)</td>
</tr>
<tr>
<td>Understanding, * Identity session, = 1</td>
<td>.031</td>
<td>.017</td>
<td>.027</td>
<td>-.043</td>
<td>-.009</td>
</tr>
<tr>
<td></td>
<td>(.026)</td>
<td>(.029)</td>
<td>(.017)</td>
<td>(.024)*</td>
<td>(.034)</td>
</tr>
<tr>
<td>Const.</td>
<td>.491</td>
<td>.633</td>
<td>.153</td>
<td>.363</td>
<td>.304</td>
</tr>
<tr>
<td></td>
<td>(.053)**</td>
<td>(.057)**</td>
<td>(.039)**</td>
<td>(.037)**</td>
<td>(.062)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>478</td>
<td>478</td>
<td>478</td>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>Sample</td>
<td>T1</td>
<td>T1</td>
<td>T1</td>
<td>T1</td>
<td>T1</td>
</tr>
<tr>
<td>Cluster N</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Linear Probability Model. Dependent variable takes the value of 1 if a link is consistent with the link-formation rule indicated in the heading. Confidence: *** \leftrightarrow 99%, ** \leftrightarrow 95%, * \leftrightarrow 90%. Standard errors clustered at the session level reported in parentheses.
Table 21: Linear probability model: understanding in T2

<table>
<thead>
<tr>
<th></th>
<th>Rule 2</th>
<th>Rule 3</th>
<th>Reciprocal</th>
<th>Most Popular</th>
<th>Ingroup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Identity sessionᵈ</td>
<td>-.072</td>
<td>-.030</td>
<td>-.004</td>
<td>-.001</td>
<td>.053</td>
</tr>
<tr>
<td></td>
<td>(.059)</td>
<td>(.051)</td>
<td>(.031)</td>
<td>(.041)</td>
<td>(.055)</td>
</tr>
<tr>
<td>Understandingᵈ Identity sessionᵈ=0</td>
<td>.0009</td>
<td>.023</td>
<td>.017</td>
<td>-.022</td>
<td>.008</td>
</tr>
<tr>
<td></td>
<td>(.036)</td>
<td>(.034)</td>
<td>(.019)</td>
<td>(.029)</td>
<td>(.031)</td>
</tr>
<tr>
<td>Understandingᵈ Identity sessionᵈ=1</td>
<td>.042</td>
<td>.024</td>
<td>-.010</td>
<td>.007</td>
<td>.031</td>
</tr>
<tr>
<td></td>
<td>(.040)</td>
<td>(.029)</td>
<td>(.018)</td>
<td>(.024)</td>
<td>(.041)</td>
</tr>
<tr>
<td>Const.</td>
<td>.559</td>
<td>.675</td>
<td>.088</td>
<td>.417</td>
<td>.264</td>
</tr>
<tr>
<td></td>
<td>(.044)***</td>
<td>(.035)***</td>
<td>(.023)***</td>
<td>(.028)***</td>
<td>(.032)***</td>
</tr>
<tr>
<td>Obs.</td>
<td>488</td>
<td>488</td>
<td>488</td>
<td>488</td>
<td>488</td>
</tr>
<tr>
<td>Sample</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>Cluster N</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

Linear Probability Model. Dependent variable takes the value of 1 if a link is consistent with the link-formation rule indicated in the heading. Confidence: *** → 99%, ** → 95%, * → 90%. Standard errors clustered at the session level reported in parentheses.