:.:.Jo)".‘ - e J J

st a"),f=a.Event

3
5 CENTRE FOR THE STUDY OF
i 1. of AFRICAN ECONOMIES

RUNNING LOOPS OVER PARALLEL LISTS: APPLIED TO VARIABLE CREATION (E.G.
MARKING A PUB QUIZ) AND LABELLING

Loops are essential to automate tasks in Stata, but can get a bit confusing when you want to run them over
two separate lists. The Stata website offers a straightforward example to do the trick, using the function
word in a local macro and the forvalues command:

local agrp "cat dog cow pig"
local bgrp "meow woof moo oinkoink"
local n : word count “agrp'

forvalues i = 1/°n' {
local a : word "i' of “agrp'
local b : word "i' of “bgrp'
di "'a' says 'b'"

}

However, our task rarely involves writing the “cat says meow’ Or the “dog says woof”. In the rest of
this post, we look at two practical applications of loops over parallel lists for:

(i) generating variables to correct multiple-choice tests, and

(ii) labelling dummy variables generated from a categorical variable.

(i) Generating new variables to satisfy a specific condition

Let's say you have to correct a lot of multiple choice tests (like a pub quiz) that have been entered in a
way that each participantis a row of your dataset, and each column is their answer to a particular question.
For the sake of this example, we have 10 variables called al, a2, a3, a4, a5, a6, a7, a8, a9, al0 that contain
the answers that each participant gave to the questions.

The correct answers are given by the sequence of numbers

// 3123452111

such that the correct answer to the first question is the number 3, the correct answer for the second
question is the number 1, and so on. Now, let's code a way to count the correct answers for every
participant:

local answers "3 12 3452111"
// Don’t forget the space between each element of the list!

ds a* // Creates a list of all the questions given our variable names

local questions " r(varlist)'"


https://www.stata.com/support/faqs/programming/looping-over-parallel-lists/
https://www.stata.com/manuals13/dds.pdf

local n : word count ‘questions' //in this case n is equal to 10.
forvalues i = 1/°n'{

local a : word "i' of “answers'

local q : word "i' of “questions'

gen correct 'q'='q'=="a'

}

The last line in the loop above generates a new dummy variable equal to 1 every time the answer is correct
for that particular question. Then, to calculate the number of correct answers of each participant, use:

egen number of correct answers=rowtotal (correct ¥*)

(ii) Labelling generated dummy variables

Let's say we have a categorical variable measuring satisfaction with this blog (called user_satisfaction) that
takes 5 values, from 1to 5, labelled as follows:

label define satisfaction_scale 1"Very unsatisfied" ///
2"Somewhat unsatisfied" 3"Neutral" ///
4"Somewhat satisfied" 5"Very satisfied"

label var use:_satisfaction satisfaction_scale

If our aim is to create separate dummy variables for every value of user_satisfaction, we can:

tab user_satisfaction, gen(dummy user satisfaction_ )

noou

Suppose we only had users that were “Very unsatisfied”, “Somewhat unsatisfied”, and “Very satisfied”.
Rather than manually labelling each of the 3 generated variables, we can use a loop over a parallel list of
variable names and labels.

local satisf scale pl " "Very unsatisfied" "Somewhat unsatisfied" "'
local satisf scale p2 " "Very satisfied" "'
local satisfaction_scale " 'satisf scale pl' 'satisf scale p2' "'

local n : word count “satisfaction_scale' //In this case, n=3
forvalues i=1/"n"'{

local a : word 'i' of “satisfaction_scale'
label var dummy user satisfaction "i' "'a'"
reg dummy user satisfaction_"i'

}

In the last line inside the loop, we can calculate the proportion of users that were “Very unsatisfied”,
“Somewhat unsatisfied”, and “Very satisfied”.



Note that in the first line of the above section of code, we used string values that had spaces for our
labels (e.g. "Very unsatisfied") so we “wrapped” the content of our local macro with ™.."' Moreover,
since we cannot break the lines in a macro with ///, as in other commands, we constructed the local
satisfaction_scale with two separate locals. Even if shown in three lines, this local could simply

be written in one...

This second example may seem like an over-complication, but with more values, this could save you a
bit of time and reduce the risk of mislabelling when doing your tables!

TO GENERATE A FICTITIOUS DATASET...

To apply this tip to randomly generated data, see the sample do-file (available on the Coders’ Corner website)

Giulio Schinaia, Research Assistant in Development Economics, Oxford
05 February 2019


https://www.csae.ox.ac.uk/coders-corner/coders-corner

