

manual
Stata programs increase efficiency, impart elegance, make the code more tractable and make the do file
amenable to changes.

Let us look at an example to understand the context in which programs may be useful. After reading this
post, you might also wish to see the attached do file which runs the code on a randomly generated dataset.

Suppose we wish to tabulate two categorical variables x and y group and treatment
compliance, for n different sub-populations defined by a string variable sub_population. Then, we want to
export the results into different sheets in different excel files- each sheet corresponding to treatment-
compliance tabulation results for a specific sub-population. The tables also need to carry a heading
describing the sub-population whose results are presented and perhaps a short note describing any other
relevant details or matters that need attention.

putexcel code repetitively
(n times!) or probably loop over the sub-populations. While we could construct locals to alter the cells
and sheets, using loops would present another problem- how would we tailor it such that we get a different
heading and note for each sub-population table? What if we wanted to tabulate several other x-y variables
by sub-population and export them similarly?

 either end up tabulating and writing the putexcel code repetitively
(n times!) or probably loop over the sub-populations. While we could construct locals to alter the cells
and sheets, using loops would present another problem- how would we tailor it such that we get a different
heading and note for each sub-population table? What if we wanted to tabulate several other x-y variables
by sub-population and export them similarly?

In such a scenario, writing a program is often the easiest thing to do. Here are the steps-

1. our_program.
2. Stata will show an error in case another program by the same name already exists in memory. So

rogram. capture
prevents an error from showing up in case no such program is present, and we still ask Stata to
drop it.

capture program drop our_program

program define our_program

HOW TO WRITE PROGRAMS ON STATA

https://www.stata.com/manuals13/u18.pdf

3. Now we need to decide what the arguments i.e. the inputs that enter into the program should be.

We need the program to export the tabulation results of different sub-populations, each in a
different excel file, a different sheet, with a different heading and a different note
to refer to the cells of the excel file and while this can be defined as a local within the program

-
argument j.

allow for this flexibility by including an argument labelled condition.

args Pop Filename Sheet Heading Note j

The order in
the same order when you call the program.

4. What do we expect Stata to do when we provide these arguments to it? This recipe will form the
rovided a specimen code for the putexcel command here but as

mentioned below, this can be altered as needed.

tab treatment compliance if sub_population==“`Pop'", row matcell(cell)

putexcel set `Filename', sheet("`Sheet'") `condition’ // condition is added
as an argument here. When you call the program, specify if you want this condition to be replace
or modify.

putexcel A`j'="`Heading'"

local ++j // this increases j by 1

putexcel B`j'="Compliance Type 1" C`j’="Compliance Type 2” // export all the
column names as needed. You can also save them in a local instead of typing them.

local ++j

putexcel A`j' = “Treatment Group 1” // export all the row-names as needed.

putexcel B`j' = cell[1,1]

putexcel C`j’ = cell[1,2] // export all the cells as needed

local j = `j’+3 // increase j by more than 3 if the table is large

putexcel A`j'="`Note'"

5.

now be ended.

end

Now, in order to tabulate treatment group and compliance for a particular sub-population and export
the results, we can just call the program and give values to the arguments

Vatsal Khandelwal, DPhil Candidate in Economics, Linacre College, Oxford
29 April 2019

Suppose we want the tabulate results for sub-populations A and B on the first sheet in the same excel
file (with a sufficient gap between them) but results for sub-
of a different excel file. The program can be called as follows-

our_program A first_file 1 "Sub Population A" "These are tabulation

results of treatment groups and compliance levels for sub-population A.

These look okay.” 1 replace

our_program B first_file 1 “Sub Population B” “These are tabulation

results of treatment groups and compliance levels for sub-population B.

These look okay as well!” 6 modify

The choices 1 and 6 are arbitrary here-
want there to be some gap between the two tables so the choice of j should reflect that.

our_program C second_file 7 “Sub Population C” “Here, treatment group

and compliance levels have been tabulated for sub population C.” 1 replace

Notice how a loop
fifteen lines of code in the program and can call it to tabulate variables and export tables to different
excel files with different headings, different notes and any other differences we wish to add! For instance,
we can even add the arguments variable1 and variable2 and then use the program to tabulate any two
variables and export the results.

Programs are not just useful for the purposes of exporting tables but for
repeating similar lines of code and cannot use a loop. For example, if you wish to run regressions with
different outcome variables but the same regressors and export the results, you could use a loop. But if
you want to export different statistics for different regressions or customise the regression tables
differently for each regression- you should write a program!

