Determinants of Adoption and Levels of Demand for Fertiliser for Cereal Growing Farmers in Ethiopia

WPS/96-3

Andre Croppenstedt and Mulat Demeke

March 1996

Centre for the Study of African Economies
University of Oxford
21 Winchester Road
Oxford
OX2 6NA

Andre Croppenstedt is at CSAE, direct dial telephone number: + 44 (0) 1865 281443.
Mulat Demeke is at the Department of Economics, Addis Ababa University,
FBE, PO Box 1176, Addis Ababa, Ethiopia.

ABSTRACT: The current government of Ethiopia has put agriculture at the heart of its policies. There is particular emphasis on promoting adoption of fertiliser, improved seeds and the efficiency of input marketing and distribution. In this paper we use a nationally representative data set for 1994 to analyse what factors influence adoption of as well as intensity of fertiliser use of small-scale farmers. Results show that farmer literacy, access to all-weather roads, access to banking, extension services, and the labour availability play a role in fertiliser adoption. Addressing the first four points would substantially increase the rate of adoption. With regard to the amount of fertiliser used we find that smaller sized farms use this input more intensively. Further we find that previous experience with fertiliser, supply, liquidity, oxen owned by the household, and the ratio of the price of the main crop to the cost of fertiliser are important. Availability of credit and supply constraints are important factors in constraining fertiliser use. Our results suggest that the effect of the subsidy on fertiliser consumption is small and that providing credit would be much more effective in terms of raising adoption of and level of use of fertiliser and thus contributing to increasing agricultural output.

ACKNOWLEDGEMENT: We are grateful to Abigail Barr for her helpful comments and suggestions. All errors and views remain our own.
1. Introduction

Improving the agricultural sector's performance in Ethiopia is of crucial importance for a variety of reasons. For one, there is the relative importance of this sector. Agriculture accounts for 60% of GNP\(^1\) and about 87% of the population live in rural areas and depend, directly or indirectly, on this sector for their livelihoods. Agricultural goods — mainly coffee, hides and skins, and oilseeds — account for 90% of exports and are therefore the main source of foreign exchange and an important source of government revenue.

Past performance of the economy has been dismal. GNP per capita shrunk by about -1.9% over the period 1980-92. Agriculture only grew at the rate of 0.7 and 0.4% over the period 1970-80 and 1980-92 respectively\(^2\). Moreover, Ethiopia, a country of 51.9 million is categorised as the third poorest; 60% of the population is below the poverty line and 60% of children suffer from chronic malnutrition. Ethiopia has also suffered two large-scale famines (1973-74 and 1983-85) claiming hundreds of thousands of lives. Cereal imports and food aid came to 1045 and 963 thousand metric tons respectively, in 1992.

These figures paint a dire picture and one which indicates that the agricultural sector will play a vital role in achieving food security, combating poverty and promoting overall economic development. It is therefore not hard to see why the present government has put agriculture at the heart of its policies. These policies were developed by the Transitional Government of Ethiopia\(^3\) and focus on promoting the adoption of new technology, hybrid seeds and fertilisers as well as improving the marketing and distribution of agricultural inputs\(^4\). Cereal growing peasant farmers will inevitably play a leading role if any agricultural policy is to have the desired impact. Individual peasant farming is the dominant sub-sector, accounting for 97% of output. Moreover, cereals account for about 83% of the area used to cultivate major crops. This is distributed as follows: Teff = 26.5% of coverage; Maize = 15.9%; Barley = 12.6%; Sorghum = 12.7%; Wheat = 11%; and Millet = 3.3%; other crops include Neug, Linseed, Fenugreek and Rapeseed (CSA (1995)). Production of cereals came to 6.15 million tons in 94/95. This was down from 6.5 million tons in 80/81. This 5% decline compares with a 40% increase of the population.

In this paper we use a representative data set to assess factors which influence the adoption of fertiliser as well as the level of fertiliser consumption of cereal producing peasant farmers in

\(^2\)This compares to a population growth rate of 2.7% and 2.5% over the periods 1970-80 and 1980-91.

\(^3\)The TGE took power in 1991 by overthrowing the Soviet style "Derg" regime. Elections were held in 1995, but policies regarding agriculture have not changed.

\(^4\) The benefits of using improved seed varieties and the increased use of fertiliser (as promoted for example by Global 2002) and the need to reverse the serious food-deficit situation in Ethiopia was highlighted in a recent article in "The Economist" (November 25th, 1995, p. 49).
Ethiopia. The emphasis on fertiliser is appropriate because: a) much of the land in the high potential cereal zone is already under cultivation so increasing output calls for intensification of production; b) financial limitations make it unlikely that an entire package of improved seeds, improved soil and water conservation and more irrigation can be adopted. It would therefore appear more promising to focus on increasing fertiliser use.

The benefits of increased fertiliser use in Ethiopia have been documented by the ADD/NFIU (1992). Four year trials (1988-91) showed that the yield response to fertiliser was substantial, but varied regionally. For example, increments of 3kg of teff (using local seed types) per kg of fertiliser (at optimal rates of 100kg per hectare (Kuawab, 1995)) were obtained for Shewa, Gojam and Arssi. However, yield increases of 1.8kg were obtained in other regions. For wheat, the national average was 4.3kg of additional wheat per kg of fertiliser (using improved seeds), while for maize this figure was 6.5kg per kg of fertiliser. It would appear that substantially increasing fertiliser consumption in Ethiopia would go a long way to addressing some of the pressing issues, such as the food deficit, faced by the country.

2. The Model

Econometric studies of fertiliser adoption in Africa are rare. Falusi (1974) used a probit model to analyse fertiliser adoption of farmers in Western Nigeria. Green and Ng' ong' ola (1993) applied a logit model to data from Malawi. While the former identified extension services and access to credit to be important, the latter found that the crop grown; the farming system; access to credit; off-farm employment opportunities; and regular labour were the main determinants of fertiliser adoption. In this paper we model fertiliser adoption and fertiliser demand for a representative sample of cereal farmers in Ethiopia. We use a self-selection model which corrects for the selectivity bias (which would occur if one dropped the observations for those farmers not using any fertiliser). More sophisticated techniques have been employed by Coady (1995) who used a double-hurdle approach to model fertiliser adoption. Our possibilities are limited by the fact that some of the data has only been collected for the sub-sample of farmers that use fertiliser (see the discussion in the data section below).

The choice of fertiliser adoption is modelled by the following selection function:

\[I_i^* = \alpha' x_i + \epsilon_i, \quad I_i = 1 \text{ if } I_i^* > 0 \quad \text{and} \quad I_i = 0 \text{ if } I_i^* < 0. \]

\[A \text{ major of the trials were conducted in the high potential areas. The numbers reported are therefore on the optimistic side. Sasakawa Global 2000 reported yield increases of 52.7 and 1.8 tons/ha for maize, wheat and teff for locally available seeds and prevailing agronomic practices.} \]

\[B \text{ an interesting parallel, the supply and use of fertiliser was seen as an important means of addressing the food supply problem (in conjunction with the introduction of high yielding varieties of wheat and rice) in Pakistan. 48\% of the total increase in agricultural output in the Sixth Five Year Plan (mid-80s) was expected to come from increased use of fertiliser (Coady (1995)).} \]
Here I_i is the selection variable of which we only observe the sign; x is a vector of factors that affect adoption; ε is a random disturbance term distributed with mean 0 and variance 1; the subscripts denote the ith farmer. The regression equation for the demand for fertiliser is given by:

\begin{equation}
\gamma_i = \beta' z_i \cdot \xi_i,
\end{equation}

where γ is the amount of fertiliser purchased per hectare (in natural logarithms); z is a vector of factors affecting the level of purchases made (not necessarily the same factors that affect adoption); ξ is a random disturbance with mean 0 and variance σ^2; the subscripts are as above. We observe γ_i and z_i only if $I_i = 1$ and hence we have a problem of truncation.\footnote{Some of the variables contained in z are observed over the whole sample, but most are not.} If we apply least squares to equation (2) for the full sample we generate inconsistent estimates. The same is true if we use only the sub-sample of farmers that use fertiliser. The most popular estimation technique, that generates consistent estimates, is to use Heckman's (1976) two-step procedure: 1) to estimate the probit stage (equation (1)) and then, using the estimated α, to compute:

\begin{equation}
\lambda_i = \frac{\phi (\hat{\alpha}' z_i)}{\Phi (\hat{\alpha}' z_i)}
\end{equation}

where ϕ and Φ are the density and the cumulative distribution functions of a standard normal variable, respectively. Equation (3) is the Mills-ratio, without which equation (2) will suffer from omitted variable bias.

3. The Data

The data are obtained from a fertiliser marketing survey undertaken as part of the Development of Competitive Markets Programme, funded by the United States Agency for International Development (USAID).\footnote{The survey was conducted by Kuawab for USAID. We are grateful to Kuawab and USAID for making this data set available to us.} The survey, conducted in 1994, covered four regions and seventeen zones. These are:

<table>
<thead>
<tr>
<th>Region</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amhara</td>
<td>East Gojam, West Gojam, North Shewa, South Gonder.</td>
</tr>
<tr>
<td>Oromia</td>
<td>Arssi, East Shewa, East Wolega, Jimma, West Shewa, North West Shewa.</td>
</tr>
<tr>
<td>Southern</td>
<td>Guraghe, Hadiya, Kembata, North Omo, Sidama.</td>
</tr>
<tr>
<td>Tigray</td>
<td>South Tigray, West Tigray.</td>
</tr>
</tbody>
</table>
The number of households interviewed were 6240. After some cleaning of the data we were left with 4942 households\(^9\). These were distributed among the regions as follows: Amhara = 1337; Oromia = 2167; Southern = 1139; Tigray = 299. We aggregated the zonal groups into 7 geographical groups (the name by which we will refer to them) that we used for dummies in the analysis. The explanatory variables used in this study are described below.

Variables available over the entire sample (numbers in parentheses are cases in this category — out of a total of 4942 observations):

AGE:
The age of the head of the household. We expected age to be a proxy for experience and thus be positively correlated with adoption and level of demand for fertiliser.

SEX:
1 if household is male, 0 otherwise. Because female headed households often tend to be poorer and more subsistence oriented we expect a male headed households to be more likely to use and apply more fertiliser. An additional argument is that female headed households are likely to have a lower endowment of labour (4570 farmers are male).

EDUCA:
1 if head of household is literate, 0 otherwise. The ability to read and write would imply greater access to information and thus we anticipate a positive coefficient in the two equations (1695 farmers are literate).

TOTVAL:
We use the natural logarithm of the total value (in Ethiopian Birr) of sale of crops in 1993\(^10\) (adding 1 for the zero values) as a measure of the households liquidity. Liquidity is expected to be an important constraint for farmers wishing to use fertiliser, as well as to the amount they wish to use.

ADULT:
The number of adults, in natural logarithms, is a proxy for labour availability, and should positively influence adoption and the level of fertiliser.

DEPD:
The number of dependents in the household.

DUOX:
1 if household has 2 or more oxen, 0 otherwise. 2 oxen are required to plough a field. Households with less than 2 oxen face the uncertainty of being able to hire in at the right time (or at all). We expect a significant difference between these two groups for the choice of adopting fertiliser (2517 farmers have 2 or more oxen).

OXEN:
The number of oxen (in natural logarithms) are expected to play a role in determining the amount of fertiliser used. In particular having two or more oxen is expected to be positively correlated with fertiliser adoption. Farmers with none or only one oxen face the additional risk of obtaining oxen at the right time and may therefore be discouraged from buying fertiliser.

CULTLAND:
Land area cultivated by the household, in hectares.

EXTEN:
1 if extension services are strong, 0 otherwise. Good extension services are expected to be positively correlated with fertiliser adoption (1579 farmers had good extension services).

ACCESS:
1 if farmer has access to all-weather road, 0 otherwise. Farmers with access to all-weather roads are expected to be more likely to adopt fertiliser as well as using more of it (4051 farmers had access to all-weather roads). We note that of the surveyed farmers, 88% used pack animals to transport fertiliser.

BANK:
1 if farmer has access to bank (within 30km), 0 otherwise. This variable captures the farmers access to credit in 1994 (although of course not all farmers with access to banking received credit) as well as in the past. The argument is that credit to purchase fertiliser in the past will still have a positive impact on fertiliser adoption in the present. This is borne out by our finding that experience with fertiliser is an important variable in the decision of how much fertiliser to use (2788 farmers had access to a bank).

PCRA:
The price of output to cost of fertiliser ratio. We note here that fertiliser prices in Ethiopia have always been under state control and have remained pan-territorial to date. The Price of output

\(^9\)Details available from the authors. Essentially the cleaning entailed dropping missing values and eliminating some extreme observations.

\(^{10}\)It is therefore a predetermined variable and hence we treat it as exogenous.
is the price obtained for 100kg of the main crop (in that area) in several market towns for each particular zone. We had output price information for 65 market towns (between 2 and 5 for each zone) for the main crop11. The output price is divided by 178, the subsidised price of fertiliser (per 100kg).

DU0: Dummy for western and southern Tigray (299 farmers). This group serves as the reference group in the econometric analysis.

DU1: Dummy for Arssi and Gurage, Hadiya and Kembata (1035 farmers).

Dummies for the geographical areas are introduced to capture some of the geographic variations, such as altitude, rainfall and erosion (particularly bad in Tigray and South Gonder). We note that grain production is largely rain-fed so these dummies are expected to be very important.

DU2: Dummy for East and West Shoa, East Welega and Jimma (1424 farmers).

DU3: Dummy for Gojam (811 farmers).

DU4: Dummy for North Shewa (124 farmers).

DU5: Dummy for Sidama and North Omo (511 farmers).

DU6: Dummy for South Gonder (402 farmers).

DU7: Dummy for North West Shewa (336 farmers).

Variables available only for households who purchased some fertiliser (3060 cases in this category):

SPKNOw: 1 if the farmer reported to know the specific use of fertiliser, 0 otherwise (2693 farmers know about the specific use of fertiliser - out of 3060).

SUPPLY: 1 if the farmer perceived supply of fertiliser to be a problem (i.e. a shortage), 0 otherwise (1255 farmers have a supply problem).

CREDIT: 1 if fertiliser is bought on credit, 0 if fertiliser is bought on a cash basis (1928 farmers bought fertiliser on credit).

EXYIELD: 1 if the farmer reported to have obtained the expected yield in the previous season, 0 otherwise. We expect this variable to act as a proxy for an uncertain environment and hence we anticipate a positive coefficient (1867 farmers got the yield they expected).

EXPER: The number of years (in natural logarithms) that the farmer has been using fertiliser.

DISTANCE: Distance (in natural logarithms) that the farmer travels to buy fertiliser, in minutes.

We added a one to the variables which had some zero observations and which we wanted to use in natural logarithms. Some preliminary work (not reported here) suggested that this yielded better results than using the variables without the transformations. It also makes for an easier interpretation of the coefficients. Some descriptive statistics of the variables are given in tables 1 and 2.

Before turning to the econometric results we present some of the national findings of the survey which are interesting in themselves. The four regions dominate fertiliser consumption. 99% of the 165,000 metric tons of fertiliser distributed to small-scale farmers by The Agricultural Inputs Supply Corporation (AISCO, the principal fertiliser distribution agency) in 1994 went to these four regions.

11As some prices were missing we only had 53 observations available. We used average prices (per zone) for missing observations.
In table 3 we give the rate of application of DAP12 (Di-ammonium phosphate) for the four regions. While the recommended rate of application is 100kg/hectare it is only in Tigray and in the Southern Peoples Regions that a substantial number of farmers operate at this level. Over the whole sample, about 28% use 100kg/ha or more and 47% of farmers apply 50kg/ha or less. What is noteworthy is that there is a high degree of variation between regions and that there is quite a range of fertiliser application rates within regions. The average DAP application rates for all regions were: 51kg/ha in 1994, 38kg/ha in 1993 and 35kg/ha in 92.

Table 4 shows the distribution of DAP application by crop. While Teff has the lowest yield, it also commands the highest prices, which is generally held to explain why relatively more fertiliser is apportioned to this crop. Table 5 relates market participation to fertiliser application. It is interesting to note that a large proportion of farmers using fertiliser produces only for themselves. 51.1% produce in part for the market as well as for additional income. Table 6 gives a ranking of why farmers prefer one supplier over another and brings out the importance of credit and fertiliser cost.

4. The Results

4.1 Factors Affecting the Adoption of Fertiliser

The results of the probit estimates are given in table 7. As heteroscedasticity is a serious problem which generates inconsistent estimates in probit models (Yatchew and Griliches, 1985) we chose to test for a violation of this assumption. We found that the hypothesis of homoscedasticity could be rejected using an LM test13 and therefore used a model correcting for multiplicative heteroscedasticity14. After correcting for heteroscedasticity we find that all the parameters increase quite markedly in magnitude (DUOX increases from 0.3021 to 0.3788 as a typical example). What these results show is that it is important to check for heteroscedasticity and correct for it if necessary. The conclusions we draw below will obviously be different (stronger) from the model with heteroscedasticity.

The variables SEX and AGE are not found to be significant. With regard to AGE, we note that the absence of a well developed labour market (as in Ethiopia) implies that the attributes of the household’s own labour are of increased significance. If this variable captures the age

12DAP has 88.6 of the market share.

13This test was based on assuming that CULTLAND, AGE, TOTVAL, ADULT, and OXEN might be related to the variance. The Chi-square statistic was 38.27 and since the critical value is given by 11.07 at the 0.95 level we can reject the null hypothesis of homoscedasticity at the 5% level.

14We included CULTLAND, AGE, ADULT, and OXEN as possible sources of heteroscedasticity. We found that ADULT and CULTLAND (both 5\%) and AGE (10\%) were statistically significant. OXEN did not come out significant and neither did DUOX (although we kept the latter in the specification as the t-ratio was greater than 1). TOTVAL was not used as it was found to be insignificant in a trial run.
structure of the household then age may capture not only experience but also strength of the household labour, and these two effects will work in opposite directions\(^{15}\).

In table 11 we present the marginal effects for the different variables for each geographical dummy in the probit function (excluding AGE and SEX). For the dummy variables these marginal effects give us the percentage increase in the probability of adopting fertiliser due to a change in status (of say EDUCA) of the farmer (i.e. from a 0 to a 1). For example, for Tigray (DUO) a literate farmer is 18% more likely to be using fertiliser than an illiterate one. There is clearly a lot of variation in the marginal effects over the different regions.

The strongest effects are for ACCESS and EDUCA. Except for DU1 we find that in all cases a literate farmer having access to all-weather roads is much more likely to be adopting fertiliser. The fact that all effects are much weaker for DU1 is a reflection of the relatively much higher levels of adoption which already exist in that area. Also BANK and DUOX have an important impact. Clearly farmers with only one or zero oxen find this a constraint and are less likely to be using fertiliser. Less important but still large is the role of EXTEN and the family size which we take as a proxy for the labour availability. TOTVAL, ADULT and DEPD are evaluated at their mean values. Results in table 12 show that a targeted policy of addressing literacy, oxen ownership, extension services, access to all-weather roads and access to banking (credit) could have a very substantial impact on fertiliser adoption rates. We note that the earlier studies on fertiliser adoption in African countries mentioned in section 2 also found extension services and credit availability (among others) to be important factors.

Table 8 gives the frequencies of actual and predicted outcomes. We find that for farmers that do not use fertiliser our model would predict a lot of these to be using fertiliser. Obviously there are factors at work which we have not been able to model satisfactorily: credit constraints and shortage of supply/late delivery being the two most serious factors\(^{16}\). In table 10 we give the predicted and actual frequencies of adopting fertiliser for the eight geographical areas. The model performs reasonably well in most of the cases. Discrepancies are in some part due to the fact that we evaluated the predictions at the overall mean levels. However, in the main, the results serve to underline the heterogeneous nature of agriculture in Ethiopia.

4.2 Factors Affecting the Level of Fertiliser Consumption

Table 9 gives the parameter estimates of the demand for fertiliser equation\(^{17}\). We find that CULTLAND, EXPER, SUPPLY, TOTVAL, OXEN, and PCRA are the most important

\(^{15}\)Croppenstedt and Mamo (1996) found a negative and statistically significant relationship between the average age of the household members engaged in agriculture and farm productivity of 271 cereal farmers from three regions in Ethiopia. The data are from the Ethiopian Rural Household Survey: First Round - 1994.

\(^{16}\)Statement made on basis of rankings of fertiliser consumption problems in the four regions as produced in Kuwab (1995).

\(^{17}\)Correcting for heteroscedasticity in the first stage does not alter the estimates, but does affect their standard errors. The effect is generally quite small.